
OTIC i Lt COPY

WRDC-TR-89-1139

AD-A22 6 873

THE INTERACTIVE ADA WORKSTATION

DTIC
SEP 27 1990

General Electric Company
Corporate Research and Development
P. 0. Box 8
Schenectady, NY 12301

May 1990

Final Report forPeriod : 30 July 1985 - 30 May 1989

Approved for public release; distribution unlimited

AVIONICS LABORATORY
WRIGHT RESEARCH DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6543

I" 4'

NOTICE

WHEN GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA ARE USED FOR ANY
PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY GOVERNMENT-RELATED
PROCUREMENT, THE UNITED STATES GOVERNMENT INCURS NO RESPONSIBIITY OR ANY
OBLIGATION WHATSOEVER. THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED OR IN
ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA, IS NOT TO
BE REGARDED BY IMPLICATION, OR OTHERWISE IN ANY MANNER CONSTRUED, AS UCENSING
THE HOLDER, OR ANY OTHER PERSON OR CORPORATION; OR AS CONVEYING ANY RIGHTS DR
PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY IN ANY
WAY BE RELATED THERETO.

THIS REPORT HAS BEEN REVIEWED BY THE OFFICE OF PUBLIC AFFAIRS (ASOIPA)
AND IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS). AT
NTIS IT WILL BE AVAILABLE TO THE GENERAL PUBLIC INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN D.EVIEWED AND IS APPROVED FOR PUBLICATION.

Otheus Jackgon Donna M. Morris, Chief
Project Engineer Avionics Logistics Branch
Software Concepts Group System avionics Division

FOR THE COMMANDER

CHARLES H. KRUEGER
Director
System Avionics Division
Avionics Laboratory

IF YOUR ADDRESS HAS CHANGED, IF YOU WISH TO BE REMOVED FROM OUR MAILING
LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION PLEASE
NOTIFY WRDC/AAAF-3 , WRIGHT-PA1IERSON AFB, OH 45433-6543 TO HELP MAINTAIN
A CURRENT MAILING LIST.

COPIES OF THIS REPORT SHOULD NOT BE RETURNED UNLESS RETURN IS REGUIRED BY
SECURITY CONSIDERATIONS, CONTRACTUAL OBLIGATIONS, OR NOTICE ON A SPECIFIC
DOCUMENT.

UNCLASSIFIEDk
SEC(URITY CLASSIFICATION OFTISAE Form Approved

REPORT DOCUMENTATION PAGE OMBNo. 070O188

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED N/A

2a 4XCURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

Approved for public release; distribution is2b. DECLASSIFICATION / DOWNGRADING SCHEDULE ulmtdunlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

WRDC-TR-89-1139

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
General Electric Company (If applicable)
Corporate Research and Develop ent WRDC/AAAF

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

P.O. Box 8
Schenectady, NY 12301 WPArS, OH 45433-6543

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROC.JREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)

Same F36615-85-C-1755

Bc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

_________________________ 62204F 2003 02 I 77

11. TITLE (Include Security Classification)

The Interactive Ada Workstation

12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Final FROM Ju T. ToMay 89 May 1990 115

16. SUPPLEMENTARY NOTATION

1 7. COSATI CODES 18. SUBJECT TERMS (Continue on reverse If necessary and identify by block number)
FIELD GROUP SUB-GROUP Ada, Expert System, CASE, Automatic Programing,

Rapid Prototyping.

'19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The Interactive Ada Workstation (lAW) major concern is with decreasing the cost and
development time of future systems implemented with Ada programming language. During the
design phase, developing software with Ada takes longer and cost more than with conventional
languages. The objective of the lAW is to demonstrate significantly improved Ada
programming productivity through the use of rapid prototyping techniques.

This software was developed with the LISP language for a Symbolics machine. The work was
centered around graphical techniques and the mapping of abstract design to the Ada language.
This project developed four main graphical editors from Buhr Diagrams, State Machine
Diagrams, Decision Tables, and Truth Tables. Each editor is capable of generating Ada code.
The Buhr Representation and Ada Translator (BRAT) Editor is used for the specification of
the hierarchical structure of Ada program elements, and the calling relationship between
the elements. This data is used to produced Ada specifications. The State Machine Editor
(SME) is used to model the program behavior base on time intervals or change (Contkndho'd) -

20 DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSiE-IED/UNLIMITED S3 SAME AS RPT - DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
OTHEUS JACKSON 513 255-6548 WRDC/AAAF-3

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

BLOCK 19 Continued

of logical inputs. The Decision Table Editor (DTE) is used to describe the relationship
of systems or subsystems in terms of conditions, events, or rules. The Truth Table
Editor permits the user to describe the behavior of a BRAT object in terms of its input
and output.- There are other editors which are subsets of the main editors. In order
to integrate the four editors and permit concurrent updates, the Abstract Semantic
Model was developed. Conceptually the semantic model is viewed as data flow diagram,
with each node representing a computation and the arcs between the nodes representing
the data that passes between the computations. Other accomplishments include an
interpreter, a parser, and an incremental semantic checking (compile-as-you-type).
The lAW is one of the first Computer Aided Software Engineering (CASE) tools to focus
solely on the Ada Language. It is also suitable for develcping and maintaining very
large scale software systems. The concept and technology of the lAW is part of a
commercially supported product, TEAMWORK/ADA from Cadre Technologies.

Table of Contents
1. Executive Sum m ary ... 1

1.1 Technical Accomplishments ... 2
1.2 Summary of W ork .. 3

2. Introduction .. 4
2.1 Overview of Technical Evolution ... 5

2.1.1 P0 Prototype .. 6
2.1.1.1 The BRAT Editor ... 6
2.1.1.2 The State M achine Editor .. 6
2.1.1.3 The Decision Table Editor .. 6

2.1.2 P1 Prototype ... 7
2.1.2.1 P1 Graphics .. 7
2.1.2.2 The P1 Language .. 8

2.1.3 P2 Prototype .. 9
2.1.4 P3 and P4 Prototypes ... 10

2.1.4.1 Lexical Analysis .. 11
2.1.4.2 Incremental Parsing and Node Reuse 12

2.2 GE Developed Prototype L5 .. 14
2.3 Interrupted W ork: Prototype P6 ... 15

3. A rchitectural C hanges ... 16
3.1 Design Concepts ... 17
3.2 P0 Prototype ... 19
3.3 P1 Prototype ... 20
3.4 P2 Prototype ... 21
3.5 P3, P4 and L5 Prototypes ... 22

3.5.1 Language Processing ... 22
3.5.1.1 Semantic Analysis ... 24
3.5.1.2 Language Processing Control .. 24

3.6 Incomplete P6 Prototype ... 27
3.6.1 Language Processing Control .. 27

4. Concurrent Update: The Evolution of the Abstract Model and the
Synchronization Problem 4 31
4.1 Problem Statement ... 32

4.1.1 The Architectural M odel .. 32
4.1.1.1 Buffers, Editors and W indows ... 33
4.1.1.2 Processing User Commands .. 33
4.1.1.3 W indow M aps ... 33

4.1.2 Object Selection and the Obsolete Window Map Problem 34
4.1.2.1 Object Selected by Editor No Longer Exists 34
4.1.2.2 Viewed Object Not Selected by Editor 34
4.1.2.3 Disabling User Input ... 34

i

4.1.2.4 Object Selection Policies ... 34
4.1.2.5 Recovering From the Selection of a Nonexistent Object 35
4.1.2.6 Handling Type-Ahead ... 35

4.2 Problem Discussion and Analysis ... 36
4.3 Implementation .. 37

5. Abstract Semantic Model Structure ... 38
5.1 Evolution of the Abstract Semantic M odel .. 39

5.1.1 Impact of Concurrent Update ... 39
5.2 Overview of the Abstract M odel .. 40

5.2.1 Elements, Sets and M onitors - An Overview 40
5.2.2 Derived Sets .. 42
5.2.3 M asking Union .. 44
5.2.4 Indices ... 47

5.3 Environments ... 48
5.3.1 Additional Visibility Checks .. 52
5.3.2 Types .. 52

5.3.2.1 M athematical M odels of Types ... 53
5.3.2.2 Abstract Data Types ... 53

5.4 References .. 60

6. Graphical Structure Editor and the Abstract Model 65
6.1 Evolving Representations .. 66

6.1.1 Concurrent Update ... 66
6.2 Intended Level of Representation ... 67
6.3 Areas for Further Research .. 69

7. Language View Interaction with the Abstract Model 70
7.1 Functional Overview ... 71
7.2 Abstract M odel Interface ... 75

8. Interpreter (Abstract M odel) .. 76
8.1 Abstract M odel Interface ... 77

8.1.1 Interpreter Information .. 77
8.1.1.1 Program Source Information .. 77
8.1.1.2 Program Execution Information ... 78
8.1.1.3 Interpreter Control Information ... 79

8.1.2 Inspector ... 81
8.1.2.1 W indow .. 82
8.1.2.2 Inspector Operation .. 83
8.1.2.3 Inspector Commands .. 85

8.2 Abstract Semantic M odel ... 92

9. Porting C onsiderations .. 93
9.1 Portability to New Platforms .. 94

9.1.1 Operating System Process Support ... 94

i

9.1.2 W indow System s ... 94
9.2 Language Issues .. 95

10. Productivity Gain Estimate ... 96
10.1 Prelim inary Results ... 97

10.1.1 Productivity G ains - Structure Editor .. 97
10.1.2 Productivity Gains - State Machine Editor 97

11. Contract/Accomplishments Comparison ... 98
11.1 Prototypes ... 99
11.2 Core System ... 100

11.2.1 IAda language. .. 100
11.2.2 Interpreter ... 100
11.2.3 Hot Editor .. 100
11.2.4 Generic W indow Interface ... 101
11.2.5 Project D ata Base ... 101

11.3 Sm art Librarian .. 102
11.4 Productivity M easurem ents ... 103
11.5 A dditional Tools .. 104
11.6 H elp System ... 105
11.7 Expert System Tools .. 106

12. Lessons Learned 107
12.1 Project Evaluation .. 108
12.2 Rapid Prototyping M ethodology ... 109
12.3 Increm ental Com piler Technology .. 110
12.4 M ultiple View s Built on a Central D atabase ... 111

13. Index .. 113

A0

V y _.

Dist S , rdl

-I j

°..11

List of Figures

Figure 2-1. P1 Parsing Example 9

Figure 2-2. P2 Parsing example 10

Figure 2-3. Simplified Parse Tree Example 13

Fgure 3-1. Original Design Concept 17

Fgure 3-2. Current Design Concept 18

Fgure 3-3. PO Prototype 19

Fgure 3-4. P1 Prototype 20

Figure 3-5. P2 Prototype 21

Fgure 3-6. P3, P4, L5 Workstation Architecture 22

Figure 3-7. P3/P4/L5 Language Processing 23

Figure 3-8. P3/P4/L5 Language Processing Control 25

Figure 3-9. P6 Workstation Architecture 27

Figure 3-10. P3/P4/L5 Language Processing Control 28

Fgure 3-11. Abstract Model Manager 30

Figure 4-1. Object Selection Policy Properties 35

Figure 5-1. Abstract Semantic Model, Example 1 42

Figure 5-2. Abstract Semantic Model, Example 2 44

Figure 5-3. Masking Union with Ada Homograph Definition 46

Figure 5-4. Direct Environment Computation with Masking Unions 50

Figure 5-5. Full Ada Body Direct Environment Computation 51

Figure 5-6. Full Ada Direct Environment Computational 57

Figure 5-7. Overloadable Reference 58

Figure 5-8. Nonoverloadable Reference 59

Figure 6-1. Structure Editor Views of the Abstract Model 67

Figure 6-2. References 68

iv

Figure 7-1. P1 and P2 Prototypes 72

Figure 7-2. P3, P4 and L5 Prototypes 73

Figure 7-3. P6 Prototype (under development) 74

Figure 8-1. Inspector Window 82
Figure 8-2. Inspection of Package Body AAA 83

Figure 8-3. Inspection of Task ONE 84

Figure 8-4. Inspection of Runtime Structure 85

Figure 8-5. Inspector Commands 86
Figure 8-6. Command Listing Template 86

Figure 8-7. Inspect Menu 87

Figure 8-8. Inspect Object Input Frame 87

Figure 8-9. Find Menu 88

Figure 8-10. Find Name Input Frame 89

Figure 8-11. Find Class Input Frame 89
Figure 8-12. Action Menu 90

Figure 8-13. Option Menu 91

V

1

Executive Summary

The fundamental objective of the Interactive Ada Workstation (AW) research contract
(F36615-85-C-1755) was to significantly improve Ada programming productivity through
the use of interactive software technology, and demonstrate this capability through a series
of prototypes. Much was accomplished directly under the auspices of the contract to achieve
this objective, and as a by-product of the contract, the research matured the lAW technology
to the point where its continued development into commercially available tools became prac-
tical.

As a result of the successful research performed under the AW contract, GE signed a joint
development agreement with Cadre Technologies of Providence, R.I. to build a series of tools
based upon this work. Today, the first tools based upon this technology, the Ada Structure
Graph (ASG) editor and Ada Source Code Builder (ASB), are available from Cadre as com-
mercially supported products, and other major elements of the lAW are being readied for
commercialization. These tools, and the Teamwork/Ada environment in which they operate,
have already been specified for use in several major US government programs, including the
Space Station Environment (Lockheed), the Joint Interactive Avionics Working Group (for
LHX Helicopter, ATF and ATA avionics) and the Stars program (Boeing).

Given the technical difficulties that were encountered during the research, and the time and
resources that it took to overcome them, it is highly unlikely that these commercial offerings
would be Available today had it not been for the active support of the Air Force and the lAW
contract.

1.1 Technical Accomplishments

A number of significant technical milestones were achieved during this contract. Among
these are:

• The formalization of Buhr diagrams, state machine diagrams, decision tables, and
truth tables so that Ada code could be generated from the diagrams.

* The demonstradin that these graphic tools could be integrated in such a way that
the behavioral specification tools (such as the state machine and decision table edi-
tors) could be entered from the Buhr structure editor to provide behavioral descrip-
tions for components that had been structurally defined by the Buhr diagram. Inte-
grated Ada code generation was also demonstrated.

• The demonstration of the feasibility of instantaneous syntax checking of the com-
plete Ada language without constraining the manner in which the user performs his
edits.

" The demonstration of the feasibility of incremental semantic checking (compile-as-
you-type) with nearly real-time feedback to the user for a substantial subset of
Ada.

* The demonstration of the feasibility of integrating an interpreter with the incremen-
tal editor so that programs that are in the process of being interpreted may be modi-
fied without restarting the interpretation.

* The development of an abstract language model for supporting incremental semantic
analysis that can be extended to cover the entire Ada language. (This extension
was, in fact, carried out under GE funding after the IAW stop work order was is-
sued.)

* A demonstration that help systems such as data structure selectors, search/sort al-
gorithm selectors, and smart librarians could be integrated with these tool sets.

2

1.2 Summary of Work

The LAW contract called for the development of a series of prototypes written in Lisp on
Symbolics workstations. This platform was chosen to facilitate the rapid development of
these prototypes. At the start of the contract, rudimentary technology was already in place
on this platform for capturing individual graphic representations of a design and producing an
outline of the Ada code necessary to implement that portion of the design shown in the dia-
gram. This capability was demonstrated in the P0 prototype delivered at the start of the
contract.

Two major parallel thrusts were embarked upon: one to extend and integrate the various
graphic representations to make them more complete, and to generate an integrated Ada
code image; and the second, to develop a text editor that would compile Ada code while it is
being entered into an interpretable form, and provide an interpreter for this form. The ulti-
mate goal was to integrate these two efforts into a system that would keep the design (as
represented in the graphics) consistent with the text throughout the design cycle, even in the
face of subsequent changes to the code. In addition to these main thrusts, peripheral thrusts
in help systems, expert advisors and design checking were also initiated.

The graphic thrust matured quite quickly, as evidenced by the P1 prototype's integration of
graphic specifications of software structure and behavior. The language effort, on the other
hand, turned out to be a more formidable task. The original intent was that the prototype lan-
guage tool, which was intended to demonstrate the editor, syntax and semantic checking,
and the interpreter for a simple expression language, would be delivered as part of the P1
prototype. In fact, this prototype language tool took longer than expected to develop, and
was not delivered until the P2 prototype, which also included an editor and parser (syntax
checker) for the entire Ada language.

At this point, the bulk of the effort on the project became devoted to completing the language
coverage: developing and refining a strategy for semantic analysis (compilation) and applying
the strategy to increasing segments of the Ada language. Prototype P3 contained the first
semantic analysis capability, and P4 contained extended language coverage and an interpret-
er.

While the contract initially called for a series of seven prototypes to be developed at 6-
month intervals, subsequent alterations in the funded amount, periodic suspensions of fund-
ing, and, ultimately, the receipt of a stop work order resulted in the actual delivery of only five
completed prototypes under the contract. A sixth prototype, developed with GE funding dur-
ing one of the suspensions of Air Force funding, was orovided to the Air Force under the
terms of a memorandum of understanding regarding proprietary data. Work was in progress
toward a seventh and final prototype when the stop work order was received.

3

2
Introduction

Summary

Corporate Research and Development of the General Electric Company submits this Final
Technical Report for the Interactive Ada Workstation (LAW). This report constitutes fulfill-
ment of CDRL Sequence Number 9, CLIN00001, for contract F33615-85-C-1755 awarded in
July 1985 by the Department of the Air Force, Aeronautical Systems Division, Wright-
Patterson Air Force Base, to the General Electric Company.

This chapter introduces the project and provides an overview of its technical evolution begin-
ning with the P0 prototype, continuing through the P1, P2, P3 and P4 prototypes, and the GE-
developed L5 prototype. It also summarizes the state of the project at the time that the stop
work order was issued.

4

2.1 Overview of Technical Evolution

The lAW contract called for the development of a series of prototypes written in Lisp on
Symbolics workstations. At the start of the contract, rudimentary technology was already in
place on this platform for capturing individual graphic representations of a design and produc-
ing an outline of the Ada code necessary to implement that portion of the design shown in the
diagram. This capability was demonstrated in the P0 prototype delivered at the start of the
contract.

Two major parallel research thrusts were embarked upon: one to extend and integrate the
various graphic representations to make them more complete, and to generate an integrated
Ada code image; and the second, to develop a text editor that would compile Ada code while
it is being entered into an interpretable form, and provide an interpreter for this form. The ul-
timate goal was to integrate these two efforts into a system that would keep the design (as
represented in the graphics) consistent with the text throughout the design cycle, even in the
face of subsequent changes to the code. In addition to these main thrusts, peripheral thrusts
in help systems, expert advisors and design checking were also initiated.

The graphic thrust matured quite quickly, as evidenced by the PI prototype's integration of
graphic specifications of software structure and behavior. The language effort, on the other
hand, turned out to be a more formidable task. The original intent was that the prototype lan-
guage tool, which was intended to demonstrate the edito,, syntax and semantic checking,
and the interpreter for a simple expression language, would be delivered as part of the PI
prototype. In fact, this prototype language tool took longer than expected to develop, and
was not delivered until the P2 prototype, which also included an editor and parser (syntax
checker) for the entire Ada language.

At this point the bulk of the effort on the project became devoted to completing the language
coverage: developing and refining a strategy for semantic analysis (compilation) and applying
the strategy to increasing segments of the Ada language. Prototype P3 contained the first
semantic analysis capability, and P4 contained extended language coverage and an interpret-
er.

While the contract initially called for a series of seven prototypes to be developed, at 6-
month intervals, subsequent alterations in the funded amount, periodic suspensions of fund-
ing, and, ultimately, the receipt of a stop work order resulted in the actual delivery of only five
completed prototypes under the contract. A sixth prototype, developed with GE funding dur-
ing one of the suspensions of Air Force funding, was provided to the Air Force under the
terms of a memorandum of understanding regarding proprietary data. Work was in progress
toward a seventh and final prototype when the stop work order was received.

The following sections describe, in more detail, the five prototypes (referred to as P0 through
P4) delivered under the contract, the additional prototype developed by GE during a suspen-
sion in the funding (the prototype referred to as L5), and the work that was in progress at
the time that the stop work order was received.

5

2.1.1 P0 Prototype

The P0 prototype reflected work done at the GE prior to the contract. This previous work
was assembled and delivered to the Air Force under the terms of the contract. This proto-
type consisted of several isolated graphics editors, including:

1. the Buhr Representation and Ada Translator Editor (BRAT),

2. the State Machine Editor (SME),

3. the Decision Table Editor (DTE)

Each of these editors had code generation capability. In addition, the prototype included a
Rewrite Rule Laboratory (RRL), which could be used as the basis for a formal verification
system, and a Help System.

2.1.1.1 The BRAT Editor

The BRAT (Buhr Representation and Ada Translator) Editor was designed to facilitate the
specification of the hierarchical structure of Ada program elements, and the calling relation-
ships between the elements. In addition to basic structure, the editor captured the
parameterization required of subprograms, and the type specifications of variables and con-
stants. Collectively, this is enough information to produce the Ada specifications of all
program units shown in the diagrams, and an outline of the body for each program unit.

2.1.1.2 The State Machine Editor

The State Machine Editor (SME) allows the user to create, modify and simulate state ma-
chines. State machines provide a method for developing a formal specification of program
behavior. The state diagram which is constructed with the SME is one method for represent-
ing that solution.

Any problem that can be considered as being in one of a finite number of "states" at some
point in time, and that changes state based upon a boolean combination of logical inputs, can
be described using this editor.

2.1.1.3 The Decision Table Editor

The Decision Table Editor (DTE) allows the user to design systems or subsystems by de-
scribing them in terms of relationships between conditions and events, rules, and
relationships between rules called tables. The designer specifies a number of input condi-
tions, and a series of rules indicating which actions should be taken when the input
conditions for the rule are satisfied. The editor can then automatically generate code that im-
plements the rule-based decisions.

6

2.1.2 P1 Prototype

The P1 prototype represented the first major segment of work produced under the contract.
While the original intent was that the P1 prototype was to include both graphics and lan-
guage capability, the P1 language capability took longer than anticipated to develop. The P1
language tools were actually delivered at the same time as the P2 prototype.

2.1.2.1 P1 Graphics

The P1 prototype integrated four major graphical editors for the IAW. These included:

1. the Buhr Editor (BRAT),

2. the State Machine Editor (SME),

3. the Truth Table Editor (TTE), and

4. the Decision Table Editor (DTE)

The BRAT Editor was significantly improved to coordinate the operation of the other editors
and expert systems. In addition, a new subeditor, the Black-Box Editor, was added to
BRAT.

The Black-Box Editor (BBE), is used to specify the external interface of each object in a hi-
erarchy. The Black-Box Editor describes an object at the external socket level. User
options include adding input, output, and input/output parameters. Users are prompted to en-
ter information concerning type, source, rate and initial value. When the description is
completed, the information is automatically translated to a BRAT description of the object's
externally visible sockets.

Once an object is defined in the BRAT Editor, it can be further specified and described by the
other three editors. While all editors participate in the capture of a design, the BRAT Editor
handles all requests for code generation. In the P0 prototype, the user was required to manu-
ally merge code from each of the three editors. The P1 release eliminated the need to
manually merge the code from the various editors.

Two expert systems, or designer's assistants, were made available through BRAT. These
included:

1. the Data Structure Selector

2. the Search/Sort Selector

7

The Data Structure Selector guides the user to an appropriate implementation for an abstract
data type, based on the structure and contents of the information, and the operations that the
user expects to be frequently performed. Additional constraints, such as memory availabili-
ty, were also considered.

The Search/Sort Selection design tool helped the user select the appropriate search or sort
algorithm for a data structure. It asked a sequence of relevant questions, and then recom-
mended the most efficient procedure based upon user input.

2.12.1.1 The Truth Table Editor

The Truth Table Editor (TTE) allows the user to describe the behavior of a BRAT object in
terms of its inputs and outputs (as derived from the BBE in BRAT). This behavior descrip-
tion takes the form of a boolean equation which is derived from the user's specification of
output values for particular sets of input values.

2.1.2.2 The P1 Language

The PI Language Prototype, which was delivered at the same time as the P2 prototype, was
comprised of:

* an editor
* a parser
* a semantic analyzer, and

• an interpreter

The primary reason for producing the PI language prototype was to demonstrate the intend-
ed user interface, and show how the final system would work using a very small and
simplified language subset as an example. We anticipated that this approach would allow
the prototype to be relatively quickly produced and would generate the necessary feedback
about how the system presented itself to the user.

Unfortunately, even using this simplified language subset, the prototype took longer than an-
ticipated to develop, and was, in fact, delivered at the same time as the P2 prototype.

The P1 prototype language was a small Adr subset, adequate to generate meaningful pro-
grams. Block statements were the compilation unit. A block contained variable declarations
and a sequence of statements. Variables were declared as type integer or type boolean, and
a variable could be assigned an initial value. The sequence of statements consisted of sim-
ple if statements, loop statements, and assignment statements which were executed in
succession.

While the P1 language processing approach was incrementally effective and relatively fast, it
was not capable of handling the more complicated parsing requirements of the full Ada lan-
guage. An example of the simplified parsing is shown in figure 2-1.

8

if a then b:= c end if

K if

end if
I

then

a

b c

Figure 2-1. P1 Parsing Example

2.1.3 P2 Prototype

In examining the P1 prototype, we realized that the changes required to extend the P1 proto-
type language coverage to the entire Ada language would be so extensive that it would be
easier to abandon the prototype and begin again. This was largely due to the P1 prototype's
dependence on assumptions concerning precedence, associativity, and keywords having a
single meaning which were not valid for the full Ada language.

The P2 prototype included:

1. centralized window and process management

2. elements of a full language system including

0 text editor with reasonable range of functions

• more sophisticated parsing strategy with full Ada language syntax cover-
age

3. a demonstration of batch transfer capability between the proposed semantic data
structure and BRAT graphics data structure

4. VHDL code generation (from graphics)

9

The parser used in this prototype and subsequent prototypes was based on work done by
Ghezzi and Mandrioli. Extensions were developed to allow it to handle the full Ada lan-
guage. The resulting parser uses full bottom-up parsing techniques, and separates language
dependencies into parse tables that are used by a generic parsing kernel. Figure 2-2 shows
an example of an Ada statement parsed with this technique.

if a then b:= c ; end if;

If-Statement

II I I I
if condition then statement-list end if

I I
boolean-expression statement

a b:=c;

Figure 2-2. P2 Parsing example

2.1.4 P3 and P4 Prototypes

The P3 and P4 prototypes included:

1. A refined text editor

2. A separate lexical analyzer

3. A refined parser, with improved reuse of nodes in the parse tree

4. Semantic analysis for a substantial portion of Ada and an error message window
with text interaction.

5. Increased language coverage including:

• all predefined types except string and duration

• user-defined types

- enumerations

- subtypes

10

- nonvariant records

* implicit operators and user-defined operators

Sattributes for simple types

* predefined and user-defined exceptions and raise statements

* pragmas

* qualified expressions

6. Increased semantics performance including:

* static and dynamic expressions

- compile time evaluation of static expressions

- dynamic expressions prepared for interpretation

* statements and executable units

- analyzed and prepared for interpretation

* range checking

- case statement support

7. Batch transfer between actual semantic data structure and Buhr graphics data
structure

8. A redesigned structure editor, developed from the VHDL program, which replaced
the Buhr Editor

9. A unified data structure for graphic editors

10. An interpreter and inspector for an Ada subset

11. A Smart Librarian

2.1.4.1 Lexical Analysis

In examining the P2 prototype, we found that some incremental changes relating to strings,
comments and character literals were not being properly handled. In the P2 prototype, the
lexical analysis (which is responsible for identifying the boundaries of tokens, including
strings, character literals and comments) was split between the editor and the pdra'r. This
situation made the correction of these problems very difficult and error prone. In conse-
quence, we decided to gather the lexical analysis functionality in one place for the P3
prototype.

11

2.1.4.2 Incremental Parsing and Node Reuse

In the style of parser used in P2 and beyond, the parser constructs a tree (figure 2-3) that re-
lates the terminal tokens (visible text on the screen) to the grammar rules that are used to
recognize constructs in the language. In incremental parsing, generally one of the nodes has
been changed, and the recognition rules must be applied again to determine what has
changed.

An issue in incremental parser design is the reuse of the nodes in the parse tree. This is
equivalent to recognizing that the rule used to recognize a construct before the change is the
same rule after. When just performing syntax analysis, node reuse is primarily an efficiency
issue; the sooner the parser can recognize that nothing has changed, the sooner the reparse
can end.

When the parser is being used in conjunction with semantic analysis, the situation changes
considerably. Just as the parser plays the role of a recognizer of constructs in the language,
it also serves as a recognizer of significant program elements: the declaration of a package or
subprogram, for example. If the parse tree node that is associated with recognizing a pro-
gram element is not reused (i.e., is destroyed and rebuilt), then the abstract representation
of this program element will also be destroyed and rebuilt. If no other editors are present in
the system, this will simply cause additional semantic reanalysis. However, if other editors
have associated information with this abstract representation (graphic placement and layout
data from a structure editor, for example), this information will be lost when the abstract rep-
resentation is destroyed and rebuilt. For this reason, considerable effort was expended to
improve node reuse in the P3 and P4 prototypes.

12

PACKAGE BODY

dcltivepart block oto edni

PACKAGE IBODYI example I BEGIN * examplel

Figure 2-3. Simplified Parse Tree Example

13

2.2 GE Developed Prototype L5

After the delivery of the P4 prototype, the contract funding was suspended for a period of
time. Then, the research was continued with GE funding. The resulting L5 prototype was
made available to the Air Force under the terms of a memorandum of understanding regard-
ing GE proprietary funding.

Work on the L5 prototype focused primarily on completion of the language coverage, and on
the generalization of the abstract model for use as a common representation for both the
structure editor and the language view.

14

2.3 Interrupted Work: Prototype P6

When funding was restored to the program, work began on a final deliverable, the P6 proto-
type. Approximately halfway through the planned effort on this prototype, a final stop work
order was issued. When the order was issued, coding had just begun. The prototype never
progressed to the stage where the results could be demonstrated.

The focal point of the P6 prototype was concurrent update between the language representa-
tion and the graphic structure editor. An overview of the relationship between the graphic
editor and the abstract model is given in chapter 6. Some rearchitecting of the abstract model
processing, attribute processing, and semantic error reporting was done to make the opera-
tion of the parser independent of the abstract model, and to separate semantic error reporting
from the parser activity. These changes are described in more detail in chapter 7.

15

3
Architectural Changes

Summary

This chapter describes the design evolution and architectural changes from prototype to pro-
totype.

16

3.1 Design Concepts

The original concept for the final prototype of the lAW is shown in figure 3-1. In this view,
the IFORM Database contains a view of the design that is shared between all of the editors
and tools. Each editor has, in addition, some information that is specific to itself. What was
not appreciated in this initial view is that the lexical and syntactic information is not really
part of the shared view, but is really language editor specific information, just as graphic
placement and layout information is specific for a given graphic editor.

In this original design concept, we envisioned that the editor specific information (aside from
the language information) would simply be a data structure stored separately from the ab-
stract model. As work progressed through the various prototypes, we recognized that some
processing was required to keep these auxiliary data structures consistent with the abstract
model the same as the parse tree is kept current with the abstract model.

BRAT Editor FSM Editor Decision Table Editor Truth Table Editor

G ~Display

[FORM Database

Lexical/ emantic Analysis Interpreter/
Iada Editor Syntax Debugger

(A nalysis S n n c Fhre

@J
Figure 3-1. Original Design Concept

17

From another perspective, it is convenient from an editor's perspective to have a view of the
abstract model that has its view-specific information smoothly integrated in with the rest of
the abstract model. This requires some separate processing to relate the abstract model and
the auxiliary data. The language editor views only the auxiliary data and only indirectly inter-
acts with the abstract model. In the case of the graphics structure editor, the relationship is
more obvious, although not completely so (see chapter 6 for more details). This leads to a
revised design concept as shown in figure 3-2.

BRAT Editor FSM Editor Decision Table Editor Truth Table Editor

Tastor Translator Translator Translator

Aux. Data] A.Data Aux. Data Aux. Data

Abstract Model

Translator

TransatorSemantic Analysis(Lex/Parse,
Attribute Sanantic

Processing) Translator

Interpreter/
Debugger

ada Editor

Figure 3-2. Current Design Concept

18

3.2 PO Prototype

A block diagram of the P0 prototype is shown in figure 3-3. In this prototype, each editor
was completely independent of the others, and each had its own database. While code could
be generated from each editor, the code from the various editors had to be manually merged
and then added to for a complete program. This made it difficult to go back and change the
graphics since the subsequent editing of the code was labor intensive and error prone.

BRAT FSM Decision
Editor Editor Table

Editor

(ataae] Database IDatabase

Figure 3-3. PO Prototype

19

3.3 P1 Prototype

With the P1 prototype (figure 3-4), the operation of the graphic editors was coordinated.
The state machine, decision table and truth table editors could be entered from the BRAT ed-
itor, so that the user could easily move from structure to behavioral specification and back
again. Although each editor still maintained its own database, code generation was also co-
ordinated by the BRAT editor, eliminating the manual editing step of combining the code
together from the various editors. However, the user was still left with the problem of inte-
grating manually generated code.

The language editor, database and interpreter are shown as part of this prototype, even
though they were actually delivered at the same time as the P2 prototype.

BRAT FSM Decision Truth Table
Editor Editor Table Editor

Editor

F Database Database Datase Database j
I io r - DIaI1 IDat

Figure 3-4. PI Prototype

20

3.4 P2 Prototype

Architecturally, thene was not much change between the P1 and P2 prototypes (figure 3-5).
The major change was in the language editors, in which the demonstration editor/displayer of
the P1 was replaced with a completely new editor, and the parser portion of the new data-
base replaced the P1 database. The construction of the semantic portion of this database
was not completed for the P2 prototype, so the translation capability between the language
database and the BRAT editor was from a proposed data structure rather than an actual
one. There was no interpreter in the P2 prototype.

BRAT FSM Decision Truth Table
Editor Editor Table Editor

Editor

I - I I
j Database J Database Database Daaase

j} TetEiorDtse Intepreter

Figure 3-S. P2 Prototype

21

3.5 P3, P4 and 15 Prototypes

A functional block diagram of the P3, P4 and L5 prototypes is shown in figure 3-6. Note that
the graphics editors are now using a unified graphics database (the truth table was not car-
ried over into this prototype). The batch transfer capability from the abstract model to the
graphics database only transfers declarative information about the program structure and ref-
erences: details of executable code are not transferred in these prototypes.

Note that the displayer for the language view plays a dual role of displaying the text and the
semantic error messages.

I Decision IState

rTTable Ieeachin"" L lEditor IEditor I
Lexical

Analyzer
UniiedS'Pase Graphics

"1 abes !" Attrl= ,I structure

GTexIt/Erroro

3.5.1 Language Processing

An expanded block diagram of the language processing portion of the block diagram is shown
in figure 3-7. The language dependent portions of the Parser and IFORM Manager are con-
tained in tables. The content of these tables is determined by an attributed grammar
description of the programming language. This description is written in a Scoped Language
for Attributed Grammars, or SLAG for short. This formal description is then processed by
the SLAG processor to generate these tables.

22

EDITOR

ICHARACTERS
............

LEXICALANALYSIS
lT ° K E N S

STABLES NW LIST OF
CHANGES TOPARSE TREE

G l i]ATTRIBUTE

TAEPROCESSING

STRUCTURTL CHANGES TO

C H A G E
A B S T R A C T

TREE CHANGESMOE

ITO

TIBUTES

ATTRIBUTED

PARSE TREE
MODEL

TEXT/ERROR INTERPRETER

DISPLAY

Figure 3-7. P31P41L5 Language Processing

23

3.5.1.1 Semantic Analysis

Semantic analysis actually involves three activities:

* the processing of the lists of changed nodes from the parser,

* the processing of semantic functions; and

" the processing of change notifications in the abstract semantic model.

These activities do not necessarily occur in this order.

Lists of changes that have occurred to the parse tree are provided by the parser. These lists
indicate which parse tree nodes have been added or deleted, which nodes have been newly
connected into the tree, and which nodes (in the case of terminals) have had their values
changed. The semantic analyzer then determines which semantic functions need to be exe-
cuted (by referencing data from the table) as a result of these changes. Semantic functions
whose execution is dependent upon the creation or deletion of parse tree nodes are executed
immediately. Other semantic functions are placed in a sorted list. When the processing of
the lists of changed nodes has been completed, the semantic analyzer removes and executes
semantic functions from the function queue.

The execution of a semantic function usually results in the calculation of a new attribute val-
ue for a node in the parse tree. Some of these functions have the side effect of creating or
destroying objects in the abstract semantic model. Functions that create objects always re-
turn a pointer (handle) to the created object, and this value is placed in an attribute on the
parse tree. Some functions are executed for side-effect only: these functions execute meth-
ods on objects in the abstract semantic model, and their execution does not result in the
direct alteration of any attributes in the parse tree.

Changes to attributes in the parse tree will cause semantic functions in which the attribute
appears as an argument to be queued for the IFORM Manager to process.

Objects in the abstract semantic model may monitor other objects. Objects that are changed
notify their monitors by placing a notification message on the list of pending change notifica-
tions (although not every change to an object warrants a change notification). The IFORM
Manager passes pending change notifications to the appropriate abstract semantic model ob-
jects. Some monitors in the abstract semantic model cause the updating of attributes in the
attributed parse tree.

3.5.1.2 Language Processing Control

The coordination of the activity of the lexical analysis, parsing, attribute processing, and ab-
stract model processing is crucial to the operation of these prototypes. Altering some of the
data structures while other operations are in progress can lead to incorrect results. Failure
to interrupt the change notification process can lead to unacceptable delays in parsing and
text display update (the change notification queue and associated processing were added in
the P4 prototype to improve user responsiveness).

24

Figure 3-8 shows the work queues for language processing control, and the following algo-
rithm presents the logic for coordinating this behavior:

Lex/arseNode ListIl]E e/as Processing
TEXT EDITOR LISTS OF
COMMAN-DS NEWIALTERED

TOKENS

NODES UPDATED
LINKED IN- NODE AT-

TO TREE TRIBUTES

CREATED/
DELETED
ABSTRACT

SEMANTIC MODEL
OBJECTS

LFunction Change

"F Execution Notification
TLIST OF

LIST OF PENDING

FUNCTIONS CHANGE
NOTIFICATIONS

UPDATED MODIFIED
NODE AT- ABSTRACT
TRIBUTES SEMANTIC MODEL

MODIFIED OBJECTS

ABSTRACT
SEMANTIC MODEL

OBJECTS

Figure 3-8. P3/P4/L5 Language Processing Control

25

LOOP
IF messages are present from the editor

Perform Lex/Parse on all messages
ELSE IF There are change notifications on queue

Process an arbitrary (small) number of notifications
ELSE IF There are new or altered tokens

Process an arbitrary (small) number of tokens
ELSE IF There are functions on the function execution queue

Process a single function
END IF

END LOOP

The design of this loop ensures that the order in which incremental changes are made to the
program does not affect the syntactic and semantic analysis of the final resulting program. It
further ensures that commands from the editor are processed promptly.

26

3.6 Incomplete P6 Prototype

Figure 3-9 shows the block diagram of the P6 prototype that was under development at the
end of the contract. In this prototype, the structure editor and language processing now
share the abstract model instead of having separate databases. The responsibility for recog-
nizing and annunciating semantic errors has shifted from the attributed parse tree and the
text display to the abstract model and a separate error annunciation tool.

Lexical
Analyzer

T ' Parser

, ~Pr Edit / 0'or
[I~tErib Attribut Abstractlarse Tree IModelI

Text inerreterJ Tool

Figure 3-9. P6 Workstation Architecture

3.6.1 Language Processing Control

With the movement of the semantic error annunciation from the attributed parse tree to the
abstract model, the control of the parser and attribute processor becomes nearly independent
of the abstract model processing. Figure 3-10 shows the revised language control for the
parser, and the following algorithm outlines the logic for coordinating this processing:

27

Node List[__[~~j Lex/Parse --'llllProcessing
TEXT EDITOR LISTS OF
COMMANDS NEW/ALTERED

TOKENS

NODES UPDATED
LINKED IN- NODE AT-

TO TREE TRIBUTES

CREATED/
DELETED
ABSTRACT

SEMANTIC MODEL
OBJECTS

MESSAGES TO
Function ABSTRACT
Execution SEMANTIC MODEL

ORDERED

LIST OF
FUNCTIONS

UPDATED
NODE AT-
TRIBUTES

Figure 3-10. P31P41L,5 Language Processing Control

28

LOOP
IF messages are present from the editor

Perform Lex/Parse on all messages
ELSE IF There are new or altered tokens

Process an arbitrary (small) number of tokens
ELSE IF There are functions on the function execution queue

Process a single function
END IF

END LOOP

Figure 3-11 shows the language control for the abstract model, which is coordinated by the
following algorithm:

LOOP
IF messages are present at the input

Process inputs, creating references and returning handles
ELSE IF there are transactions to be processed

Process an arbitrary (small) number of transactions
ELSE IF There are notifications on the change notification queue

Process an arbitrary (small) number of change notifications
ELSE IF There are notifications on the semantic change notification queue

Process an arbitrary (small) number of semantic error checks
END IF

END LOOP

29

bow PrcInt Transaction

Processi~g TRANSACTIONS Processing

References Modify Abstract
-Model ObjectsRefe rence ABSTRACT

Tree MODEL

•q Model Objects

Change
L)E Notification

Compute IIII ABSTRACT

Sem. Errors SEMANTIC CHANGE
ANALYSIS NOTIFICATIONS
CHANGE

NOTIFICATIONS

Figure 3-11. Abstract Model Manager

30

4
Concurrent Update: The Evolution of the Abstract

Model and the Synchronization Problem

Summary

This chapter describes concurrent update issues relating to the evolution of the Abstract
Model and the synchronization problem.

It includes detailed problem statements and discussion of the architectural model, object se-
lection and the obsolete window map problem discussion and analysis, implementation
issues and changes since the initial prototype.

31

4.1 Problem Statement

The initial structure of the research program embarked upon two separate thrusts (graphics
editors and language editors) with an eye toward merging these two thrusts together into a
system in which graphic changes were automatically reflected in the language view, and vice
versa. The approach currently being undertaken to accomplish this merger is to place all sig-
nificant design information in a memory-resident database known as the abstract model.

The placement of significant information in the abstract model requires the solution of several
design problems. The first and obvious design problem is the definition of an abstract repre-
sentation that meets the needs of both the language and graphics editors. The second
design problem is the coordination of access to the abstract model: if one editor is making
changes to the abstract model, when is it safe to allow another editor to have access to the
abstract model? The third design problem is the coordination of the deferred processing that
occurs within the abstract model (to perform semantic checks) with the external access to
the abstract model from the editors.

In this chapter, we will examine the issues associated with coordinating the access of multi-
ple editors to the abstract model. This is called the synchronization problem. The primary
requirement here is that database consistency be maintained: that each editor leave the ab-
stract model in a state that can be examined by other editors, and that the state that it is left
in meets certain consistency requirements.

The consistency requirements may be met in a number of ways. The choice between these,
however, is not arbitrary: different strategies may have distinctly different manifestations
from the user's perspective. The challenge in the design is to satisfy the consistency re-
quirement while, at the same time, maintaining a user interface that is understandable,
predictable and responsive from the user's perspective.

4.1.1 The Architectural Model

The view that the user sees on the screen, while derived from the information in the abstract
model, is, in fact, a copy of that information stored in a form more suitable for display purpos-
es. In fact, there may be two or more of these stored forms representing various stages in
the transformation from the abstract model to the screen, and vice versa.

For the purpose of the following discussion, we will simplify the architecture to assume that
there is only one transformation occurring between the abstract model and the display that is
visible to the user. In this simplified analysis. we view the abstract model as simply an in-
ternalized view of textual data stored in buffers. The relationship between the screen
display and the buffer is described by a window map that relates visible objects (characters)
on the screen to the structured text ii the buffer. This simplified view allows us to examine
and understand the issues more clearly, and generalizes well to the actual architecture of the
lAW.

32

4.1.1.1 Buffers, Editors and Windows

We begin by stating our assumptions. Our simplified architecture contains:

1. a set of independent buffers containing data

2. a set of editors for invoking commands, and

3. a set of windows for displaying data

We assume that each window is managed by one and only one editor and displays data from
one and only one buffer. We further assume that each editor can handle multiple windows,
and that different windows associated with the same editor may be associated with different
buffers.

From the buffer's viewpoint, each buffer can be associated with (viewed by and altered by)
several editors and can be displayed in multiple windows. Buffers contain data about objects
and can possess multiple views; for example, a buffer might have a text view and a graphics
view. When a change is made to an object contained in one of the physical views, the change
should be propagated to all other views.

4.1.1.2 Processing User Commands

Our view of the user interface is that users issue commands and specify objects on which the
commands are to perform. Each command is directed to and processed by an editor.

Processing a command can require an update of the window in which the command was is-
sued (e.g., a command to move the cursor within a text window). An editor might request
that the responsible buffer manager perform an update on an object. The resulting change in
the buffer contents will normally cause an update in the window from which the object was
selected. The buffer update may, in turn, cause updates in other windows displaying the ob-
jects in the buffer.

4.1.1.3 Window Maps

Each window's editor maintains a window map that describes the mapping of objects from
the buffer being displayed in the window and positions in the window. When the mouse is
clicked in a window, or a position-specific text-editing command is issued, the window map
determines which object is at the specified position.

33

4.1.2 Object Selection and the Obsolete Window Map Problem

One of the most important aspects in implementing commands is the identification of the se-
lected object for a command. Many commands involve specifying a position within a window,
either explicitly or implicitly. If the window map of that window is not up to date, there is
some danger that a user can select an item in a window display based on incomplete or obso-
lete data.

In a window based system, the user can typically select an object in the following ways:

1. mouse selection

2. cursor position

3. position relative to cursor

There are several ways in which the window map may be out of date. These are explored in
the following sections.

4.1.2.1 Object Selected by Editor No Longer Exists

When a user selects an object by specifying a position in a window, the editor refers to a
window map to determine which object is at the specified position. There is a danger that
the selected object no longer exists because a previously issued command caused it to be de-
leted from the buffer.

4.1.2.2 Viewed Object Not Selected by Editor

There is also a danger that a user could select an object on the basis of the current display
and the editor selects a different object due to a change in the buffer and/or window map be-
tween the time the user makes the selection and the time the editor converts the user input
into the identity of the selected object.

4.1.2.3 Disabling User Input

An editor might sometimes avoid object selection problems by disabling user input devices.
When user input devices are disabled, user input relative to object selection is ignored and
user input in the type-ahead stream is discarded. However, disabling user input could lead
to a clumsy user interface.

4.1.2.4 Object Selection Policies

The issue of what should happen in the case of a user trying to select an object while the
buffer and/or window map might be changing can be resolved in a number of ways:

34

1. Conservative Policy - allow user input only when there is no possibility of
incorrect object selection

2. Buffer-Oriented Policy - base each object selection on the buffer that results from
performing the previous command

3. Display-Oriented Policy - base each object selection on the display seen by the
user at the time the selection is made

4. Opportunistic Policy - base each object selection on the window map that exists
at the time the editor interprets the command.

Object Selection Policy Properties

Policy Selected Object Viewed Object Input Always
Always Exists Always Exists Enabled

Conservative Yes Yes No
Buffer-Oriented Yes No Yes
Display-Oriented No Yes Yes
Opportunistic No No Yes

Figure 4-1. Object Selection Policy Properties

4.1.2.5 Recovering From the Selection of a Nonexistent Object

For both the display-oriented policy and the opportunistic policy, it is possible that the us-
er's selection of an object will be interpreted by the editor as an object that no longer exists.
The editor must be designed to accommodate this issue.

4.1.2.6 Handling Type-Ahead

Type-ahead is the rapid issuance of a series of commands at a pace faster than the display
can accommodate. It can involve both keyboard and mouse input. The object-selection poli-
cy determines the manner in which type-ahead is handled.

35

4.2 Problem Discussion and Analysis

Each of the possible object selection policies outlined in the previous section has desirable
and undesirable characteristics. With the conservative policy, user input is disabled whenev-
er there is any possibility of the screen being inconsistent with the internal representation.
While this approach guarantees that the operations are always well-defined, it has the an-
noying side-effect of disabling and reenabling the user input based upon the state of the
processing. The behavior of the system will thus change based upon the rate at which user
input occurs relative to the internal processing speed. From a user's perspective, this is per-
ceived as inconsistent behavior (it should not matter how fast you type!).

The buffer-oriented policy escalates objects at the time that the editor executes the com-
mand, and after the screen has been updated with the results of the previous command. This
policy has the disadvantage of possibly operating on a different object than the user selected,
if the execution of another operation changes the screen contents. However, this is exactly
the way type-ahead operates, and users appear comfortable with how type-ahead works.
This policy has the advantage that the selected object always exists.

The display-oriented policy selects the object to be operated on at the time that the user en-
ters the command. While there is no ambiguity in the user's intention, this policy has the
disadvantage that the selected object may not exist when it is time to execute the command
if an intervening command has deleted the object. Now the system designer must define the
behavior of the system in this case, and make it obvious to the user at the same time. No
good understandable solution that implements this policy was discovered.

The opportunistic policy is the same as the buffer oriented policy, save that the screen is not
necessarily updated with the results of the previous command. This policy has the disadvan-
tage that it can select an object different from the one the user originally indicated, and can
also result in the section of an object that no longer exists. It thus has all of the disadvantag-
es of both the display oriented and buffer oriented policies, and results in an interface that is
very confusing to the end user.

Based upon the above reasoning, the buffer oriented policy was selected as the policy to be
used with all editors.

36

4.3 Implementation

The following description of the concurrent update implementation is based upon several ab-
stract concepts: a notion of an active editor; a notion of an entity manager, which
encompasses the scheduling aspects of the operating system; and the notion of a transaction
manager, which handles communications between the various processes.

Io

An editor will seek to become active when user input is directed to a window that it is man-
aging. The editor will request active status (which must be yielded by the editor that
currently has this status) from the transaction manager. When all processing associated
with the current active editor has been completed, and the transaction manager has sent all
pending update messages to the editor requesting active status, it will grant active status to
that editor. Once the editor has processed these update messages, it is guaranteed that its
window is consistent with the internal representation.

Once the editor is designated as the active editor, it has exclusive read/write access to the
internal representation until it yields such permission. In general, the editor will not yield
permission when it has pending user input.

37

5
Abstract Semantic Model Structure

Summary

This chapter explains the structure of the Abstract Semantic Model. It begins with a descrip-
tion of how the Abstract Model evolved, and includes data on the impact of concurrent
update. It contains a section that provides an overview of the Abstract Model including de-
scriptions of:

* Elements, sets and monitors

* Derived sets

* Masking union, and

* Indices

Environments and references are described in detail including: additional visibility checks,
types (mathematical models of types and abstract data types).

38

5.1 Evolution of the Abstract Semantic Model

The term IFORM -'.vs originally used in the P1 language prototype (dolivered with the P2
prototype) to refer to the internal form or representation of the program that was being used
by the language processing tools. As the prototypes advanced, this notion of an internal
form split into two distinct notions: an attributed parse tree associated with the parser, and
an abstract representation of the program that became known as the abstract semantic mod-
el, or simply the abstract model.

While it is possible to describe the entire compile-time semantics of a language with an at-
tributed grammar, some significant computational problems are associated with the imple-
mentation of this approach.

First, if a piece of data is required some distance away in the tree, it must be replicated many
times on intermediate nodes in the process of moving it from the source node to the target
node. The sheer volume of data that must be moved makes this approach impractical.

Second, most of the information that needs to be moved consists of relationships between
data elements as well as the data elements themselves. For example, when a function is de-
clared, its identifier and return type, as well as an ordered list of the identifiers, types and
modes of its formal parameters, needs to be communicated to all potential reference points in
the program.

The abstract semantic model was conceived as a solution to both of these problems. The ab-
stract semantic model gathers related data elements and relations together into objects
known as Descriptors. Instead of passing these descriptors from node to node, they are
placed in a set (whose identifier is passed from node to node) representing the "context" in
which the identifier is defined and referenced. Daemons (active functions) known as Moni-
tors then monitor these sets to perform semantic analysis.

In the P3, P4 and L5 prototypes, the semantic analysis performed by the abstract model was
limited to visibility computation and overload resolution. The remaining semantic checks
were performed by the attribute processor associated with the attributed parse tree. This re-
suited in both a complicated interface between the parser/attribute processor and the
abstract model, and a very complicated control structure that led to annoying delays from the
user's perspective. In the prototype that was under development when the stop work order
was received, all semantic checking was being migrated into the abstract model. This allows
the parser to give immediate syntax feedback to the user without waiting for the semantic
analysis to reach a stopping point. Furthermore, it led to a significant simplification in the in-
terface between the abstract model and the parser/attribute processor.

5.1.1 Impact of Concurrent Update

As the design of the language processing elements neared completion, and the issue of con-
current update was considered, the abstract model began to take on a different role: that of
intermediary between the language and graphics views. Chapter 6 addresses the extensions
to the abstract model necessary to support the graphics view.

39

5.2 Overview of the Abstract Model

There are really two layers to the abstract model: the level at which it presents a logical
model of a program; and the level of primitives that provide the mechanisms for incremental
semantic analysis.

At the logical level, a program is viewed as a collection of declarations and references to
those declarations. The semantic analysis problem is essentially to determine which decla-
ration each reference refers to, and to further ensure that the declaration is the type of
declaration required.

Each declaration in a program is modeled in the form of a descriptor in the abstract semantic
model. Each instance of a package, procedure or function declaration has a corresponding de-
scriptor representing that particular instance. Similarly, instances of type, literal and variable
declarations are also modeled as descriptors. These descriptors contain information about
the declaration, such as what kind of declaration it is, naming information, and a pointer back
to the parse tree node that created it.

References, on the other hand, represent a need for semantic analysis. In the abstract mod-
el, they are represented by a collection of objects that actually perform the semantic
analysis. These collections are called references. In the following subsection, we will exam-
ine the nature of the objects that perform the semantic analysis.

5.2.1 Elements, Sets and Monitors - An Overview

Conceptually, semantic analysis can be viewed as a data flow diagram, with each node in the
data flow diagram representing a computation that must be performed, and the arcs between
the nodes representing the data that passes between the computations. In our abstract mod-
el, we represent the data flowing between the nodes as sets, and the computations being
performed by monitors. Monitors that produce results for use by other computations are
modeled by a combination of a monitor and a set, where the set represents the result of the
computation. These combinations of monitors and sets are known as derived sets.

The basic building blocks of the abstract semantic model are elements, sets and monitors,
where an element is any object that is a member of a set. A monitor is a daemon (active
function) that is attached to a set or element, and monitors the set for changes. If the moni-
tor detects a change, it executes specific functions. The function may revise the contents of
another set, or produce a boolean result indicating a semantic error.

ga- Note that while elements of sets are usually descriptors representing program decla-
rations, sets may in fact contain many other kinds of objects, including other sets
and raw data elements.

40

The function associated with a monitor is triggered when the set to which it is attached
changes. The specific action that the monitor takes can be dependent upon the nature of the
change: was an element added or removed from the set, or did an element already in the set
simply change in some unspecified way. Note that in the event of an element changing, the
monitor is not informed of the nature of the change, only that the set has changed.

If we let a set contain representatives of all declarations that have occurred, we could per-
form semantic analysis by attaching monitors to the set. For example, consider the following
program:

PACKAGE BODY examplel IS
TYPE X IS (first, last);
A:X;

BEGIN
A :- first;

END example;

The following figure shows the set for this example containing four descriptors:

1. type X,

2. variable A,

3. literal first

4. literal last.

The figure also shows an example of a semantic question that would arise from the assign-
ment statement: once the left-hand side of the assignment statement has resolved to a
variable with a particular type,

does the literal on the right resolve to a single descriptor?

This question is embodied in a monitor that sets an error flag if the answer is no.

41

VARIABLE DESCRrPTOR

NAME: A TYPE: X

TYPE DESCRIPTOR Set error flag if set does
NAME: X not contain exactly oneF literal descriptor named

LITERAL DESCRIPTOR first with type X.
NAME: first TYPE: X

LITERAL DESCRIPTOR
NAME: last TYPE: X MONITOR

SET

Figure 5-1. Abstract Semantic Model, Example 1

5.2.2 Derived Sets

This approach to semantic analysis suffers some computational problems. Each time the se-
mantic question must be reevaluated (which is each time any change occurs to the set), the
monitor must:

• Determine which descriptors are visible

* Determine which of these descriptors have the desired name (with complexity
proportional to the number of visible descriptors)

* Determine which of the descriptors with correct visibility and name have the
correct type signaturts.

If an entire program were modeled in this manner, the computational complexity would ap-
proach O(n-r), where n is the number of descriptors, and r is the number of references
(monitors).

42

The amount of code that needs to be executed in each case also implies that this re-
lationship has a fairly large constant associated with it.

To begin to reduce this complexity, we introduce a new notion called a derived set.

A derived set consists of a set and a monitor that determines its contents. For example, we
could create a derived set containing only those descriptors from the direct environment
whose name is "first."

The determination of membership of a given element in the derived set is indepen-
dent of the size of the source set, and is a relatively simple function. With this ap-
proach, we can reduce the size of the constant associated with the complexity of the
analysis.

While virtually any function can be used to determine membership in a derived set, in prac-

tice most derived sets fall into one of three basic categories:

1. boolean sets,

2. filtered sets, and

3. mapped sets.

A boolean set takes two or more source sets and performs a boolean function (the monitor)
on their elements: intersection, union, or difference.

In a filtered set, the monitor is a predicate function applied to each element in turn. Member-
ship is based upon the predicate's boolean result. This can be used to select descriptors
based on name, return type, or other properties.

The monitor for a mapped set takes a descriptor in the source set and maps it into a value ir
the derived set. The most common map takes a descriptor into its return type, so that the
derived set is now the set of return types represented by the source set.

While these basic types of derived sets serve most needs, they are frequently combined to
form more complex functions. For example, a filter and a map could be combined to condition-
ally map descriptors into values.

The determination of the contents of a derived set is done in two steps.

1. When the set is initially created, the descriptors that satisfy the membership
conditions are placed in the set.

2. After this initial load of the set, the derived set is informed of any subsequent
additions or deletions to the source set, or of changes that occur to any existing
members of the source set. When these messages are received, the monitor
associated with the derived set evaluates the changes to determine if the
contents of the derived set should change.

43

SET

DERIVED SET
VARIABLE DESCRIPTOR

NAME: A TYPE: X

TYPE DESCRIPTOR
NAME: X

fIRst TE LITERAL DESCRIPTOR

NATE:rL D ESCPTO NAME: first TYPE: X

LITERAL DESCRIPTOR things named i
NAME: last TYPE: X "first"

Set error flag if set does
not contain exactly one
literal descriptor with

type X.

MONITOR

Figure 5-2. Abstract Semantic Model, Example 2

5.2.3 Masking Union

While implementing the Ada rules for determining the visibility of a declaration in a program,
it became apparent that a derived set was required in which elements from one source set
would take precedence over (dominate) elements from a second set. This set became known
as a masking union, because elements from the dominant set can mask the existence of ele-
ments from the recessive set. The set operates as follows:

44

Given a predicate function (known as a homograph test in Ada) that determines if two ele-
ments are "indistinguishable" according to some criteria, the following rules determine
membership in a masking union:

A member of the dominant set is a member of the masking union if and only if it has
no homograph in the dominant set. In other words, if two elements in the dominant
set are indistinguishable, neither becomes a member of the masking union.

A member of the recessive set is a member of the masking union if and only if it has
no homograph in either the dominant or recessive set.

The definition of homograph used in the Ada language is as follows:

DEFINITION: Homograph - Two declarations are homographs of each other if either:

a) they have the same identifier and overloading is allowed for at most one of the two

b) they have the same identifier and parameter and result type profile

Figure 5-3 presents an example of a masking union using the Ada homograph definition.

45

VARIABLE DESCRIPTOR VARIABLE DESCRIPTOR
NAME: b TYPE: x NAMIE: a TYPE: inte er

VARIABLE DESCRIPTOR 1VARIABLE DESCRIPTOR
NAME: b TYPE: x JNAME: c TYPE: y

VARIABLE DESCRIPTOR [ARIABLE DESCRIPTOR
NAME:d TYPE x VNAME: c TYPE: y

YAXIAIE EBSCRI~ORTYPE DES CRIPTOR

SET SET

.VARIAB.E DESCRIPTOR
NAME: d.TYP1nEgex

TYPE DESCRIPTOR1
I NAME: y

MASKING UNION

Figure S-3. Masking Union with Ada Homograph Definition

46

5.2.4 Indices

During the implementation of the abstract semantic model, it became apparent that the deter-
mination of membership in masking unions could be computationally improved by adding
indices to the dominant and recessive sets. Accordingly, a generalized indexing capability
was added to all sets. In general, indices on a particular key are created the first time an in-
dexed access is attempted with that key. In this way, indices are not created until they are
needed. In addition, to facilitate the processing of changes to individual elements, an inverse
index is kept so that, should a key value change, the old index key may be recovered. This
was necessary for masking unions so that descriptors that might have been "hidden" can
now become visible.

47

5.3 Environments

The concept of an environment is frequently used in describing the semantics of a program-
ming language. In the formal sense, an environment is a mapping of identifiers to the
declarations that they designate. When an identifier is encountered in an expression, the en-
vironment is then used to determine which declaration(s) could possibly be designated by
the identifier (overload resolution within the expression may be required to narrow down to a
single declaration). In conventional compilers and assemblers, the environment is often re-
ferred to as the symbol table.

One of the more difficult computations in the incremental semantic analysis of a scoped pro-
gramming language is the determination of the environment at a particular point in a
program. Batch compilers typically both build and use the symbol table as they progress
through a program, adding declarations as they are encountered, and removing them as the
scope changes. Since the table is being used at the same time, when an identifier is encoun-
tered, the symbol table represents the actually visible declarations at that point in the
program.

Since identifiers (other than the name of the thing being declared) can occur in a declaration,
the environment used to interpret the identifiers in declarations is different for each declara-
tion. For example, if there are d declarations, there are d+1 significant environments, each
differing from the previous one by a single declaration. This does not present a problem to
the batch compiler, for it successively modifies and uses the table as it passes through the
program. However, it presents a serious computational problem for the incremental compiler.

The problem is that in order to evaluate an incremental change, the symbol table must be re-
constructed at the point of change. If no symbol table information is saved, the entire
program must be reanalyzed from the beginning in order to reconstruct the symbol table at
the point of change. If all symbol table information is saved, then no time is required, but
O(d2) space is required, where d is the number of declarations in the program. If key symbol
tables are saved, then the table at the point of change must be reconstructed from the near-
est checkpointed symbol table (space may still be O(d2)). In any case, if the change is
simply a new occurrence of an identifier, then it is analyzed and the change is complete. If,
however, the change is a new declaration, then the remainder of the program that is within
the scope of the new declaration must be searched for identifiers whose interpretation may
be affected by the new declaration. Furthermore, if there are saved environments, those that
are affected by the change must be resaved. The net effect is that the worst case incremen-
tal editing scenario (without considering the complexity of overload resolution) has O(d+r)2

complexity, where d is the number of declarations, and r is the number of references.

One of the major sources of complexity here is the large number of environments that occur in
the declarative regions of a program due to the interleaving of references and declarations.
The LAW takes a slightly different approach to environments.

This direct environment is actually computed from the declarations that occur locally within
the declarative region (local declarations) and the direct environment that is inherited from
the next outer scope.

48

A masking union (see figure 5-4) can be used to describe this computation with:

0 the dominant set being the set of local declarations,

* the recessive set being the direct environment from the next outer scope, and

* the masking union itself being the current direct environment.

Visibility computations for Ada are further complicated by the presence of both specifications
and bodies, each of which has its own declarative region, and the Ada "use" clause. Figure
5-5 presents the full environmental computation in terms of abstract semantic model sets.

44

49

DIRECT ENVIRONMENT
OF PACKAGE standard

LOCAL DECLARATIONS OMINANT RECESSIVE
OF PACKAGE example2

V L CDIRECT EN IRONMENT
OF PACKA example 2

LOCAL DECLARATIONS DOMINANT RECESSIVE
OF PACKAGE abc

VARIABLE DESCRIPTORI

Is DIRECT ENVIRONMENT
package body example OFPCAG b

a integer; OF PACKAGE abc
pacwg body abc Is

a : Integer;
begin

a:= l;

end;
end;

Figure 5-4. Direct Environment Computation with Masking Unions

50

Set of Used
Packages

Corresponding Descriptor [
(specification)

Map [Parent's Direct
Environment

SCorresponding Local

Local Declarations Declarations

tionsan

Local Declaration Sets
from Used Package

Specifications

tal Declaration

UUnion

UnionSetof Used
] EDeclarations

D n i Recessive
[Lxical
L.--~Declar"a.tions

Dom'inant ' Recessive

€ Environment

Masking

Union

Figure 5-5. Full Ada Body Direct Environment Computation

51

5.3.1 Additional Visibility Checks

The following visibility rules are not enforced by the direct environment computation, and
must be checked by other means:

"Within the specification of a subprogram, every declaration of the same identifier as the
subprogram is hidden; the same holds within a generic instantiation that declares a subprogram,
and within an entry declaration or the formal part of an accept statement; where hidden in this
manner, a declaration is visible neither by selection nor directly." (LRM Section 8.3, paragraph
16) This requirement is met by creating a special environment for each declaration.

This environment consists of a masking union whose dominant set contains a "dummy" de-
scriptor whose name is the name of the object being declared, and whose recessive set is the
normal direct environment. In this manner, any inappropriate references will resolve to the
"dummy" descriptor, and can be readily detected as errors.

Homographs in the local declarations are allowed under the following circumstances (LRM Section
8.3, paragraph 17):

"Exactly one of the two elements is the implicit declaration of a predefined operation. Note that
implicit declarations are not entered as part of the program, but are implicitly declared when
a new or derived type is declared (LRM Sections 3.3.3 and 4.5). In this case, the implicit
declaration is always hidden by its homograph."

and/or

"Exactly one of the two elements is the implicit declaration of a derived subprogram. A
derivable subprogram (LRM Section 3.4, paragraph 11) is a user-defined subprogram that
redefines an operation that is implicitly defined for a type. A new type that is derived from
this type also has this user-supplied operation implicitly defined, and this operation is known
as a derived subprogram. In this case, the derived subprogram hides the implicit operator of
the same name, and, in addition, is itself hidden by any explicit declaration made by the
programmer."

5.3.2 Types

There are several notions of type and of type relationships, all of which are significant to
some degree in the IAW. These include the notions of a mathematical type, the abstract da-
ta types, derived types, type inheritance and subtypes.

The following sections examine these concepts, and their relationships to the IAW model of
types.

52

5.3.2.1 Mathematical Models of Types

The mathematical notion of type is that of a domain of values. For example, the domain of in-
tegers is a type, and the domain of reals is another type. When types appear explicitly in
programming languages, what actually appears in the language is a representative of the do-
main. For example, we might use INTEGER to denote the set of integers, and REAL to
denote the set of real numbers. In the mathematical model, all type representatives of a giv-
en domain are equivalent: if INT and INTEGER both represent the domain of integers, and
the variable a is declared to be of type INT, and the variable b is declared to be of type INTE-
GER, a may be assigned the value of b, and vice versa.

In the mathematical model, functions and procedures also have types. The type of these con-
structs is defined in terms of the types of their parameter types and return type, and is
referred to as a type signature. For example, the addition operator for integers would have a
type signature:

INTEGER X INTEGER => INTEGER

Since type signatures are written in terms of domain representatives, we must further stipu-
late, in the mathematical model, that signatures constructed from equivalent domain
representatives are themselves equivalent. Thus the following type signatures are all equiv-
alent:

INTEGER X INTEGER =:> INTEGER

INT X INT == INT

INTEGER X INT == INTEGER

INTEGER X INTEGER == INT

The signature approach can also be used to describe complex data types. A record, consist-
ing of an integer and a real number, would have type:

INTEGER X REAL

An array of four integers would have type:

INTEGER X INTEGER X INTEGER X INTEGER

5.3.2.2 Abstract Data Types

A different notion of a type deals with the expectation that the set of values (the mathemati-
cal model) collectively share some properties or operations. For example, for the set of
integers, we expect to have a successor function that, given an integer, returns the next inte-
ger in the sequence. This notion of a type is then a combination of a set of values (the
mathematical model) and a set of operations, and is usually referred to as an abstract data
type.

53

While we may intuitively expect that the operations associated with an abstract data type
take values of that type as arguments, it is not mandatory that they do so. For example, an
operator for a finite enumeration type may take the type representative itself as an argument,
and return the cardinality of the enumeration. As the data type itself gets more complex (a
record, or array, or a more complex data structure), intuition begins to fail in terms of what
the "type" of the operators should be. As a result, there are, in general, no restrictions
placed upon the "types" of operators associated with an abstract data type. In fact, in the ex-
treme, an abstract data type may not represent any data type at all, but may simply be a
collection of operators.

The notion of equivalence in abstract data types is much more complex than in the mathemat-
ical model, to the extent that the notion is unusable in present programming languages. The
reason is as follows: to extend the notion of equivalence completely, we would have to say
that two abstract data types are equivalent if and only if:

a) they represent the same value domain

b) they have an equivalent set of operations, by which we mean that each pair of operations (one
from each abstract data type):

1) shares the same name

2) shares the sara type signature (up to equivalence)

3) have mathematically equivalent functions, which is to say that, for all inputs, they produce
the same result and the same side-effects.

Unfortunately, it is an open question as to how to determine the mathematical equivalence of
two pieces of code, and therefore, in general, it is not computationally feasible to establish
condition b3 above. Consequently, the notion of equivalence is not used in languages that
employ abstract data types.

Without the notion of equivalence, type signatures for functions and complex data structures
take on a slightly different character. As in the mathematical mode, type signatures are con-
structed from the representatives of the abstract data types. However, since it is
computationally infeasible to recognize type equivalence, signatures constructed from equiva-
lent abstract data types are not equivalent. Thus we have the following results: using the
same example as in the mathematical model of types, if INT and INTEGER are two abstract
data types representing the set of integers, and the variable, a, is declared to be of type INT,
and the variable, b, is declared to be of type INTEGER, a may not be assigned the value of b,
and vice versa. In addition, the following type signatures are not equivalent:

INTEGER X INTEGER ==> INTEGER

INT X INT => INT

INTEGER X INT =* INTEGER

INTEGER X INTEGER == INT

54

5.3.3 Type Environments - An Introduction

We now turn to an abstraction that we will use initially to model abstract data types, and lat-
er extend to model other programming language constructs as well, such as subprograms and
Ada packages. In our earlier discussion of direct environment computations, we had a notion
similar to that of the set of operators associated with an abstract data type, namely the set
of local declarations in a declarative region. Thus an abstract data type could be modeled as a
logical declarative region that contains the operator declarations. Furthermore, if there is an
object that serves as a representative of the environment, this object can serve as the repre-
sentative of the abstract data type. In the lAW these objects are called type environments.

Descriptors that represent the operations (functions and procedures) associated with the ab-
stract data type are placed in the local declaration set of the type environment. The handle of
the type environment object itself serves as the representative of the abstract data type in
type signatures.

Type environments consist of two components - specification and body. The specification of
the abstract data type contains the specifications of the operations associated with the type.
The body contains the bodies (implementation details) of these operations. An example (in
pseudo-code) of a "stripped-down" integer abstract data type might be:

abstract-type abs-integer is
function next (a:integer) return integer;

end abs-integer,

abstract-type body abs-integer is
function next (a:integer) return integer is

return a+l;
end next;

end abs-integer,

In implementation, a type environment is a complete direct environment, as described in sec-
tion 4.1. The direct environment of the abstract data type represents the lexical environment
in which the operations contained within the abstract data type are declared.

5.3.4 Type Inheritance

An extension to the type environment model allows for type inheritance, enabling the defini-
tion of new types in terms of existing types. To implement this, we extend the concept of
local declarations to include declarations that are inherited from other abstract data types,
with the provision that actual local declarations can override their homographs in the inherit-
ed declarations. A composite declarations set (see figure 5-6) is added to the environment
computation. This set is a masking union in which the local declaration union is the dominant
set, and the inherited declarations form the recessive set.

In this model, the specifications of type environments inherit declarations from the specifica-
tions of the inherited type environments, and bodies of type environments inherit
declarations from the bodies of the inherited type environments. Local declarations will

55

mask out homographs from their parents, thus providing local override capability. Note that
all declarations, whether from specifications or bodies, end up in the body's local declaration
union, and thus are available for use in the body.

Inheritance introduces the notion of ancestry, which alters the concept of type checking.
Since descendent types inherit from their ancestors, a value of a descendent type may be
safely used as a value for a variable that was declared to be of an ancestor type, since all
properties of the ancestor are also present in the descendent. This conclusion is also valid
for function parameters with mode "in," with the formal parameter type being an ancestor of
the argument type. For "out" parameters, the type of the passed argument (which will re-
ceive the value) must be an ancestor of the formal parameter type, for the same reason.
Finally, if the parameter's mode is "in-out," there must be an exact match between types.

5.3.5 Derived Types

In some languages, new types may be defined in terms of an existing type, but with the prop-
erty that values of the new type are not acceptable where values of the original type are
expected, and vice versa. In essence, this is an intentional creation of a new abstract data
type that is equivalent (in the sense defined above) to the original type. This can be mod-
eled as a type environment that has inherited the original type, but does not acknowledge the
original type as an ancestor. Thus values of the derived type are not acceptable where val-
ues of the original type were expected.

5.3.6 Subprogram Types

By virtue of the fact that functions and procedures may contain declarations, they must in-
clude environments to contain these declarations. In the 1AW, subprograms are modeled as
type environments that are augmented with parameterization and return type information.
Formal parameter declarations are placed both in the local declaration set and an ordered pa-
rameter list. The return type (known as a value type) is maintained as an instance variable.
The type signature of a subprogram is constructed from the type signatures of its arguments
and its value type. These type signatures are unique: two functions that have identical argu-
ment types and return types will have the same signature.

56

CorrsponingSet f PaentParent's Direct
Descrptor ypesEnvironment

Set of Withed
Packages

Composite
Declaration Sets

Coresondng from Parent Types Leia

LSet of Used
~ 1 Packages

Set of Inherited IMap
Declarations Local Declaration

LclDeclaration

[UiI Set of Use
Delatons

Domi~nant Recessive Dominant Rcsiv

Composite Lexical
Declarations Declarations

Masking Masking
Union Union

DominantRecessive

Figure 5-6. Full Ada Direct Environment Computational

57

Direct
Environment

Filter on
NAME

Possibiliies
Based on Name

Return Type
Possibilities (derived

from enclosing Filter on
reference's Possibilities EXPECTED

Based on Return RETURN TYPE
Types) r

Possibilities
Based on Return

Types

Parameterization
Tables: Parameter

Identifiers vs. Sets of Filter on
"Own Return Type parameterization

Possibilities" from each possibilities
enclosed reference

Possibilities
Based on

Parameter Types

Constrained Return Type Filter on Own Return
and Constrained Mode Type

(derived from enclosing UKNOWN Possibilities
reference's Actually TYPE AND

Referenced Descriptor Set MD E
MODE

Actually
Referenced OVERLOADABLE

Descriptor Set REFERENCE

Figure 5-7. Overloadable Reference

58

Direct
Environment

Filter on

I NAME

Possibilities
based on name

NONOVERLOADABLE
REFERENCE

Figure 5-8. Nonoverloadable Reference

59

5.4 References

When an identifier is used in a language expression, the declaration to which the identifier re-
fers must be determined. This correlation is, in actuality, a computation that seeks to map
the identifier to a single declaration that is visible in the context in which the identifier ap-
pears. In Ada, all references can be resolved to specific declarations at compile time. In
some languages, notably object oriented languages and languages with dynamic scoping, res-
olution may not be possible until run time. What can be done, however, is to implement a
typing strategy that will allow a compile time check to ensure that the run time evaluation
will always result in locating a declaration.

In the following section, we will examine overload resolution in Ada and its implementation

in the IAW.

5.4.1 Ada References

Abstract data model references are objects that perform this computation. Every reference
contains an actually-referenced-descriptor-set, and the computation is deemed successful if
it terminates with exactly one descriptor in this set. Any other result indicates a semantic
error.

5.4.1.1 Ada Overloadable References

Overloadable References, in addition to locating descriptors with the correct name in the di-
rect environment, also embody the rules necessary for overload resolution. To implement
overload resolution, the references are linked together according to the hierarchy of the ex-
pression in which they occur. As an example of this hierarchy, consider the assignment
statement:

a:= b + c;

In this statement, there are four identifiers: 'a', '+', b', and 'c'. For each of these identifiers,
a reference is created to determine which declaration is to be associated with each identifier.
The declarations need not be unique based on name alone. For example, there may be one
'+' operator for integers, and another for real numbers. The references must determine which
of these descriptors is the correct one.

In order to determine the correct descriptor, the references must share type information. To
Help understand this process, let us reformulate the expression as if '+' were a conventional
function:

a := + (b, c);

Obviously, the type of the value that '+' returns must match the type of a. In implementa-
tion, this is accomplished by the reference to 'a' providing type constraint information to the
reference to '+'. The reference to 'a' is considered to be the enclosing reference for the refer-
ence to '+'. Similarly, the reference to '+' is the enclosing reference for the references to
both 'a' and 'b', as indicated in the following diagram:

60

a

4 X+K

b c

After this enclosing/enclosed reference relationship is established, the references share the
type information necessary to uniquely select the referenced descriptors at each level in the
reference hierarchy. As a side effect, references retain partial results that may aid the pro-
grammer if the reference did not uniquely resolve to a single declaration.

The process of sharing type information can be described in what is commonly known as the
"three pass algorithm" for overload resolution:

PASS 1: The first pass propagates type possibilities from the outermost operator reference
to the innermost. Given an expression organized as described above, the first pass of the
algorithm begins with the outermost (topmost in the diagram) reference, and locates the
declarations in the environment that match the identifier. This yields a set of declarations,
from which the type possibilities of the next innermost reference may be derived. These type
possibilities are then passed to the next innermost reference, which searches the
environment for declarations that match its identifier and the type possibilities. This process
repeats recursively to the innermost references.

PASS 2: The second pass proceeds from innermost expressions to outermost. Beginning
with the innermost references, if a reference is a parameter of its enclosing reference, the set
of descriptors found in pass I is used to deternine the type possibilities that this parameter
could assume. This type information is then passed to the enclosing reference, which
examines all of the parameter type possibilities for all parameters, and further restricts its set
of descriptors from pass I according to the parameter type information. If it, in turn, is a
parameter of its enclosing reference, its type possibilities are in turn passed to its enclosing
reference. This process continues until the outermost references have been processed.

PASS 3: The third pass is a final propagation of type information from the outermost to
innermost references. After the first two passes, it is possible for all but the outermost
references to still have multiple possibilities for referenced descriptors. If overload resolution
is possible, the outermost reference must have only one possibility. The third pass consists
of taking this one possibility and propagating type information once again as in the first
pass, but operating on the sets of descriptors arrived at in pass 2. All references should
uniquely resolve at this point.

61

If the references in the expression can be uniquely resclved, the outermost reference will be
uniquely resolved after the second pass. The actual type information is then propagated to
the enclosed references as in the first pass. All references should be uniquely resolved after
the third pass.

As implemented, an overloadable reference locates a descriptor in a direct environment in
four successive stages: locating descriptors with the correct name; locating descriptors
whose return (base) types match the possibilities from an enclosing reference (pass 1), and
providing constraints for enclosed references (actual parameters) as a result; locating de-
scriptors whose parameter (base) types match the possibilities of the enclosed references
(actual parameters) (pass 2); and, finally, selecting the single descriptor that is actually be-
ing referenced. More formally, the details of a single reference's Ada overload resolution can
be described as follows:

Given:
Name n
Set of type constraints St (from the enclosing reference)
A final type constraint f
Set of descriptors D
Set of actual parameters A

The referenced descriptor may be computed by the following logic:

1) Locate descriptors with correct name
R1 - {dE D I d'name - n)

2) Further restrict based upon enclosing type constraints

R2 - (dE R1 I tE St s.t. d'signature -t}

3) Further restrict based upon actual parameter data

R3 ({dE R2 I VpE d'parameters
EITHER

3aE A s.t. ((a'position - p'position) V (akeyword-
p.keyword))

A p'signature - a'signature
OR

p'optional - "true"

4) Further restrict based upon the final type constraints

R4 - {dE R3 I d'signature - Q

If R4 does not contain exactly one descriptor, then the reference computation has failed, and
there is a semantic error.

62

5.4.2 Extended References

The previous section described overload resolution in a context for which type comparison
consisted of an identity check. When type inheritance is introduced, a variety of actual types
may be acceptable for a given formal parameter type, depending upon the relationships of the
types (in terms of inheritance) and the mode of the formal parameter.

Inheritance introduces a notion of ancestry. Formally, we define an ancestor of a type to be
either the type itself, an immediate parent, or an ancestor of an immediate parent. Converse-
ly, we can define a descendent type to be the type itself, a child of the type, or a descendent
of any of its children. With these notions, we can now describe the type matching possibili-
ties. For a formal parameter of mode "in," or a variable on the left hand side of an assign-
ment statement, any value whose type is a descendent of the formal type is acceptable as an
assigned value. For a formal parameter of mode "out," any value whose type is an ancestor
of the formal type is acceptable as an assigned value. For a formal parameter of mode "in
out," the types must match exactly.

In addition to this new notion of what types are acceptable as substitutes, an additional step
is necessary in the overload resolution process. With the type ancestry comparisons instead
of type identity, it is possible to reach the final stage of the old overload resolution approach
and have more than one descriptor (this was a semantic error in the old method). When this
occurs, the type of one of the descriptors in the set should be an ancestor of the types of all of
the other descriptors. If it is, then this descriptor is the one being referenced. If such a de-
scriptor is not found, then the reference cannot be resolved. In the following logic, a fifth step
has been added to accomplish this check.
Extended overload resolution can be described as follows:

Given:
Name n
Set of mode and type constraint pairs St

Set of final mode and type constraint pairs Ft

Set of descriptors D
Set of actual parameters A

Define "appropriate-type" to mean "signature" if the reference has no parameters, and to

mean "retum-type" if the reference has parameters.

The referenced descriptor may be computed by the following logic:

1) Locate descriptors with correct name

R1 - (dE D I d'name - n

63

2) Further restrict based upon enclosing type constraints
R2- (de R,1 I3 se- St st.

IF this reference Is not a parameter of the enclosing reference
THEN st"p is an ancestor of d'appropulate-type

ELSE IF smode -In"
THEN stype Is an ancestor of d'approprilte-type

ELSE IF SMode - *out
THEN d'appropriate-type Is an ancestor of s'type

ELSE IF s'mode - In-out"
THEN d'appwoprate-type - slype)

3) Further restrict based upon actual parameter data
R3- (dE: R2 1I VpE d'parameters

EITHER 3ae A s.t.
(a'positlon - p'position OR a'keywoi - p.keyword)
AND

EITHER (p'mode - "in" AND p'signature is an
ancestor of a'signature)

OR (p'mode - "out" AND a'signature Is an ancestor of
p'signature)

OR (p'mode - In-out" AND a'signature - p'signature)
OR

p'optional - "true"

4) Further restrict based upon enclosing type constraints after parameter restriction
R4- (drE R3 13 te Ft s~t

IF this reference Is not a parameter of the enclosing reference
THEN ttype is an ancestor of d'appropriate-type

ELSE IF t'mode a "In"
THEN ttype is an ancestor of d'appropriate-type

ELSE IF Mrode a "our
THEN d'appropniate-type is an ancestor of tlype

ELSE IF Mrode a "In-out"
THEN d'appropriate-type - tlype)

5) Finally locate SUP (least upper bound) signature descriptor
R5-{(de R4 I Vdxe R4 dsignature Is an ancestor of dx'signature)

If R5does not contain exactly one descriptor, then the reference computation has failed, and
there is a semantic error.

64

6
Graphical Structure Editor and the Abstract Model

Summary

This chapter discusses the graphical editors' methodology, including the evolving representa-
tions as well as concurrent update and the intended level of representation.

It concludes with a section covering areas for further research.

4

65

6.1 Evolving Representations

The initial BRAT editor and its successor, the structure editor, had their own internal repre-
sentations of a program that was independent of the language model. In the P3, P4 and L5
prototypes, a program was provided that created the graphics data structure from the lan-
guage abstract model. Coupled with the ability of the graphics editors to generate Ada code,
which could then be read into the language editor, this provided a primitive means of going
back and forth between the two styles of editors. (Note that no mechanism has been imple-
mented for going from the language view to the representations for the graphical behavior
editors - there is still much research to be done in this area.)

The mechanisms provided in the P3, P4 and L5 prototypes for transitioning from graphics to
language and back again have one serious drawback: they lose information. In going from
graphics to text, the specifics of graphic placement and layout have no textual representa-
tions, and are lost. A sequence of transformations from graphics to text and back to graphics
will thus result in a graphic image that is equivalent to the original image in the information
that it contains about the program, but may look very different.

In going from text to graphics, information is also lost: there is no representation in the
graphic structure editor for executable statements. A sequence of transformations from text
to graphics and back to text will, therefore, result in text without any executable statements.

6.1.1 Concurrent Update

The goal of concurrent update is to eliminate this problem of lost information in going back
and forth between the graphics and language views of the program. This work was in
progress at the time that the stop work order was received. The following description re-
lates the state of the design at that time.

The approach taken in achieving concurrent update was to rethink the structure editor as a
view of the abstract model. Each descriptor in the abstract model would have one or more
corresponding graphic views or images, each indexed by name. Since declarative unit de-
scriptors may contain other declarations (these declarations are locally defined in the
declarative unit descriptor), the views associated with these descriptors may, optionally, in-
clude the views of contained descriptors. The resulting information model is shown in figure
6-1.

While the mapping between descriptors and views is straightforward, the relationship be-
tween references in the code and arrows (invocations) in the graphics is a little more
complicated. The interpretation that has been given to the arrows in the graphics is that they
do not represent any specific reference that may occur in the code. Rather, they represent a
constraint that at least one reference to the indicated declaration must occur within the scope
of the indicated descriptor. The information model showing this relationship is shown in fig-
ure 6-2.

66

6.2 Intended Level of Representation

i~ nssy cireetIfiwVIcnanviwVteV2soig descrip to

mutbMeie nV'sonn ecitr

... 6 7

makes
reference

(locally

refeenceExistential

d in). act.ually
Rreference

logical .. .

Obcs an

Figure 6-2. References

68

6.3 Areas for Further Research

One major area that remains to be examined is the relationship between the graphic repre-
sentations of behavior and their manifestations in code. While it is relatively simple to
generate code that implements a state machine or decision table, that code representation is
not unique: there are many possible programs that implement the behavior defined by a sin-
gle state machine. On the other hand, it is not possible, in general, to determine if a
particular piece of code has a state machine representation, and recover that representation.

A Thus we do not even have the rudimentary relationship between text and graphics that we
had for the structure editors.

How, then, do we maintain the consistency of the graphic and textual views? Part of the
answer seems to be that the abstract representation of a state machine may, in fact, be sub-
stantially different than that of the code that is generated from it. In this case, the projected
code could be treated like a noneditable artifact of the abstract state machine. Numerous is-
sues remain to be explored, such as:

• What is an appropriate abstract representation of behavior?
* How should a mixed representation of "real" text and noneditable text be presented

to the user, and managed from a language (parsing) point of view?

69

7
Language View Interaction with the Abstract Model

Summary

This chapter provides a functional overview of the language processing part of the system, in-
cluding diagrams of the P1 and P2 prototypes, the P3, P4, and L5 prototypes, and the P6
prototype, which is under development.

It also contains a description of the abstact model interface.

70

7.1 Functional Overview

The language processing portion of the system has evolved considerably over the course of
the lAW contract. Figure 7-1 is a data flow diagram of the initial language processing imple-
mentation, as delivered in the P1 and P2 language systems. Note that all communications
between the editor and the displayer (except for cursor placement information, which is not
shown) occurs through the parser. Note also that the parse tree is a data structure that is
only used by the parser.

OR

In figure 7-2, this architecture has been extended to include attributes on the parse tree, and
the processing necessary to compute their values. Also, the abstract model and its associat-
ed processor have been added. The attribute processor computes the values of attributes on
the tree based upon other attribute values. Some of these computations have side-effects of
modifying the abstract model and generating semantic error messages.

In the P3, P4 and L5 prototypes, the abstract model processor updates the attributed parse
tree to provide feedback about the results of semantic analysis, and the displayer takes on
the additional responsibility for the annunciation of semantic errors. Thus there are three
processes that can access the attributed pare tree: the parser, the attribute processor, and
the abstract model processor. This situation requires a high degree of access coordination of
these three processes. While some rearchitecture of the control structures was done in this
series of prototypes to improve responsiveness to the user, this continuing interaction made
testing and troubleshooting difficult.

The architecture for the (uncompleted) P6 prototype was altered as reflected in figure 7-3 to
overcome this coordination problem. In this arrangement, the responsibility for the annuncia-
tion of semantic error messages has been moved to a separate tool. In consequence, the
information flow from the attribute processor to the abstract model processor, and, ultimate-
ly, the error tool is strictly one-way. This completely eliminates the three-way coordination
problem found in the earlier prototypes.

71

Messages for
Displayer

Parse Tree

Commands from
Editor

Figure 7-1. PI and P2 Prototypes

72

DispayerAbstract Model
Processor

Semantic Error
Messages

Messages for Abstract Model
Displayer

Attr'ibuted
Parse Tree

Attribute
Parser Processor

List of Altered
Nodes

Commands from
Editor

Figure 7-2. P3, P4 and L5 Prototypes

73

Semantic Error

Messages

Messages for
Displayer Abstract Model

muw
Attributed
Parse Tree

PasrAttribute

List of Altered
Nodes

Commands from
Editor

Figure 7-3. P6 Prototype (under development)

74

7.2 Abstract Model Interface

The nature of the interface between the parser and the abstract model has also evolved from
prototype to prototype. The basic elements of the abstract model are descriptors
(representatives of program elements that have been declared) and references (identifiers
that need to be matched up with the declarations that they are referring to). In the P3, P4
and L5 prototypes, the attribute processor explicitly created both descriptors and references,
as well as initiating semantic checking on these objects.

One problem with this approach is that, with some type expressions, it is not clear whether
the expression simply refers to an existing type, or is the implicit declaration of a new sub-
type. To overcome this problem, special abstract model functions were introduced to con-
struct descriptors. These functions evaluate the type expressions, and decide if a descriptor
needs to be constructed, or whether an existing descriptor is being referenced.

With this change, the attribute processor no longer creates desciptors at all. All interactions
now fall into one of three categories:

1. the creation and destruction of abstract semantic model references and sets,

2. the modification of parameters of the references,

3. and the placement and removal of abstract semantic model objects in sets.

75

8
Interpreter (Abstract Model)

Summary
The lAW Interpreter is composed of three parts:

1. the inspector,

2. the kernel, and

3. the error-handler.

The inspector is a tool to hierarchically examine the structure of the program definition or its
execution.

The kernel is the primary component and allows a user to interactively execute a program.

If a trace point or error is encountered, the error-handler provides a mechanism to trap and
display the current state.

76

8.1 Abstract Model Interface

8.1.1 Interpreter Information
This section describes the information provided by the Interpreter for the user. Three class-

es of information are available through the interpreter:

1. Program Source Information

2. Program Execution Information

3. Interpreter Control Information

These classes of information are provided through the three components of the Interpreter.
Together, they give a complete picture of the definition and execution of a specified program.
To understand the information, some characteristics of the interpreter should be understood.
The interpreter executes an Ada program in subunits corresponding to Ada tasks. A default
task is assigned to the overall program, and a program may or may not include user-defined
tasks.

8.1.1.1 Program Source Information

Program source information shows the correspondence of execution information with the pro-
gram structure and program text. The following sections describe the program source
information that is maintained.

8.1.1.1.1 Source Display

The source code display of a unique editor is associated with the interpreter. As a result, the
code will be displayed using boldface type and other pretty printing techniques. The kernel
will add information to the editor window as needed.

8.1.1.1.2 Procrarn Structure

One capacity of the inspector is displaying the program structure. The inspector allows the
user to look closely at a single program object, e.g., an if statement, a variable, or a package.
The inspector displays detailed information about the object chosen. The user can then
choose to look closely at another program object. This object may be an item in the previous
objects display, e.g., a procedure might be chosen from the local declaration information about
a package. In this way, the user could examine the program structure in a hierarchical man-
ner. The user could also examine unrelated pieces of the structure as needed. The inspector
operation is described in detail in section 8.1.2.

77

8.1.1.1.3 Source Trace Point Indicator

For each trace point, a marker pointing to a line in the source display is maintained. If a trace
point is set for a statement, the marker indicates that the trace point action is associated
with that statement. For a trace point set on a variable, the indicator will be placed on the
line of the variable declaration.

8.1.1.1.4 Executlon Pointer

For each activated task the kernel has a source code execution pointer. This pointer tracks
the line of source code corresponding to the task's execution point. If viewing the entire pro-
gram, the display will include only the execution pointer of the task in which the current
execution is taking place. If viewing the execution of a single task, the execution pointer of
this task is the one displayed.

8.1.1.2 Program Execution Information

Program execution information is the largest class of information associated with the inter-
preter. As the program runs, information is stored and retrieved. It is this information that
determines the behavior of the execution of the next line of code and allows the user to track
this behavior. The following is a breakdown of execution information.

8.1.1.2.1 Task List

A list of all activated tasks is maintained. Associated with each task is an execution state
that is one of RUNNING, READY, SUSPENDED, and TERMINATED. [ANSI 83]

8.1.1.2.2 Data Stack

A data stack contains all of the current runtime data for a task. The data is grouped according
to the declarative unit to which is belongs, i.e., all of the variables declared in Function A and
its parameters are grouped separately from the parameters and variables declared in Proce-
dure B. Each activated task has a private data stack. These stacks are linked through a
global data stack. This global stack also stores all of the runtime data for packages and other
units that do not belong in an Ada task.

8.1.12.3 Control Stacks

Like the data stack, a control stack for each task is maintained. The control stack is a stack
of all of the program units and statements that have been called but not yet completed. For
example, if Function A calls Procedure B, which consists solely of Loop C, the control stack
at the beginning of execution of Loop C will consist of Function A, Procedure B, and Loop C.
As execution of Loop C proceeds, the control stack may also include instructions contained
within Loop C. As a program unit or statement is completed, it is removed from the control
stack, i.e., after completion of Loop C, the control stack consists of Function A and Procedure
B.

78

8.1.1.2.4 Execution History

The interpreter is designed so that it remembers all of the steps a program takes during exe-
cution. The history is a trace of exactly what the interpreter has done with any associated
data changes and is maintained on both a global and per task basis. Space (memory) con-
cerns may require that some elements of the history, typically executable units such as loop
statements and procedure calls, get compressed into one atomic action. With this trace of the
execution history, it now becomes possible to unexecute the program either on the global or
per task basis. The execution of an individual task can be unexecuted without affecting the
status of other tasks until a point of rendezvous is reached. To back up beyond this point,
each task at the rendezvous must be unexecuted.

8.1.1.3 Interpreter Control Information

The following information describes the state of the kernel. It allows the user to adjust the
behavior of the interpreter and determine the status of the program or interpretation.

8.1.1.3.1 Trace Points

Trace points are set, activated, and removed by the user. Before and after executing each
statement or accessing variables, the kernel checks for a trace point. If a trace point is
reached, user defined actions will occur, such as removing the trace point and continuing, or
entering the error-handler. The error-handler allows examination of the status of the inter-
pretation more closely.

The interpreter allows flexibility in this debugging environment by providing extensive trace
point functionality. Trace points can be set on Ada statements to take action before or after
the line is executed. Breaking before the line is executed is the traditional use of break-
points. In addition, trace points can be set on variable declarations. In this case, the user
specifies whether a break will occur each time the variable is accessed, written, or both. This
is the traditional use of watch points.

User-modified attributes allow these two types of trace points to be selectively activated
and modified individually or in groups. The following is a list of attribute descriptions. Each
attribute includes a list of options in braces with the attribute title and its default setting in
bold.

Action to Take at Beginning: (Option-Menu, Error, Nothing, [Halt, Deactivate,
Print, Remove])

The specified action will be performed before the statement at which the trace point is
set is executed or before the variable on which the trace point is set is referenced.

The user can choose one of the first three options above and can choose one or more
of the options in brackets. Option Menu displays a menu of the other action options
at the time the trace point is hit. Error puts the current execution state in the error-
handler. Nothing simply tells the interpreter to continue execution.

79

One or more of the following options can be chosen. Halt halts execution completely.
Deactivate will cause the breakpoint to become inactive so further execution will not
break at that point. Print indicates the source line/data is printed in the Debug win-
dow pane. Remove removes the trace point and all associated indicators.

Action to Take at End: (Option-Menu, Error, Nothing, [Halt, Deactivate, Print,
Remove])

The specified action will be performed after the execution of the line at which the trace
point or after referencing the variable on which the trace point is set. The options are
the same as described in the attribute Action to Take at Beginning.

Reason to Break: (Read, Write, Value)

This attribute indicates the conditions to be satisfied when breaking on a reference to
a variable. A variable is only associated with a trace point set on a declaration; there-
fore, the Reason to Break attribute is not applicable to trace points set on Ada state-
ments.

One or more of the options can be chosen. Read causes the specified action to be per-
formed if the variable is accessed for reading. Write causes the specified action to be
performed if the variable is accessed for writing. Value allows the user to qualify the
trace point to only be active if the variable is equal to a user inputted value.

Direction: (Forward, Unexecution)

Trace points have a direction associated with them. The direction tells the error-han-
dler to pay attention to the trace point when interpreting in that direction. One or both
of the options can be chosen.

Active: (Yes, No)

This parameter indicates whether or not the trace point should be effective immediate-
ly. This attribute can be used when one wishes to set multiple trace points and then
invoke them one at a time. Note also that trace point classes may be a more efficient
way to control the activation of trace points.

Class: (Null, Class_Name)

Each trace point belongs to a class. The advantage to using classes is that sets of
trace points can be activated and deactivated as a group. This can be more efficient
than setting the Active attribute for each individual trace point. The default indicates
that the trace point is a member of an unnamed class. Class names are assigned by
the user when trace points are created. Any valid Ada identifier can be used for a
class name.

80

8.1.1.3.2 Selected Tasks

Task selection controls the display of portions of the symbol table and the history informa-
tion. The user selects one or more tasks of a program. The symbol table shows global data
and the data owned by the selected task or tasks. The displayed history shows only what
the selected task or tasks has done. The default selected task is the set of all tasks of the
current program.

8.1.1.3.3 Execution Direction

The kernel is able to execute an Ada program in both a forward and reverse direction. The
program executes normally in the forward direction. The reverse direction unexecutes the
code. Commands have been defined to allow the direction of successive execution steps to
be independent.

8.1.1.3.4 Current Stepping Size

The size of the step to be executed next is determined by the command issued. A micro-step
executes one line of assembly code. A step executes one line of code. The user can also
choose to execute a statement or a loop iteration. The interpreter also allows finishing the
execution of an indentation level or a call from the current execution point.

8.1.1.3.5 Debug Package

The kernel provides a package for debugging that is separate from normal program I/. The
package allows statements to be flagged as debug statements. The debug statements can be
executed or ignored. Ignoring these trace statements might be useful in checking the perfor-
mance of the code once it has been debugged.

The output from the debug package can be displayed in two ways.

* To retain the context, debug output can be interleaved with standard program
output.

• To separate the trace statements, a separate window can be used for display

purposes.

The user will also be able to save and print the debug package interaction.

8.1.2 Inspector

The inspector component of the interpreter allows the examination of the program structure
and execution. When an object is inspected, detailed information about that object is dis-
played. If an Ada package specification is inspected, the information would include all
variables and subprograms defined in the package specification. From this point, the user can
inspect any object displayed as information from a previous inspection or choose something
unrelated.

81

8.1.2.1 Window

The inspector uses a form of the typical interpreter window and is shown in Figure 8-1. Com-
mands are found in the four menus on the menu bar. There are three panes that hold
inspected objects and one pane for a history of the inspected objects. The inspection history
provides an easy method of calling back information that has already been examined. The dis-
play of the first inspected object will appear in the bottom pane of the window. Its information
will be presented in a tabular form with labels. The object name will appear in the inspection
history. As a new object is inspected, the earlier inspections are entered into the inspection
history and filtcr up a window until they drop off the top. To recall an item that has already
been inspected, the mouse can be used to pick an object from the inspection history or from
the inspection panes. All panes of the inspector window are scrollable to hold more informa-
tion.

01 ____Ada Inspector 0
Inspect Find Action Options

Inspection History

Inspector

Inspector

Inspector

Command Line

Figure 8-1. Inspector Window

82

8.1.2.2 Inspector Operation

A sample inspector session better illustrates the inspector operation and its capability to ex-
amine a structure hierarchically. The user may, for example, first specify Package AAA to
examine the compile-time structure. The inspector would produce information about this
package including any tasks that are declared locally as shown in Figure 8-2. Note the list-
ing of information includes Task One, Task Two, and Type State. Package AAA has been
entered in the inspection history.

'3 Inspector
!ncrwt Flind Artinn OnDtinnc

(Package Body AAA)

(Package Body AAA)
Local Declarations

Packages: null
Tasks: [Task ONE) (Task TWO)
Procedures: null
Functions: null
Types: (Type State)
Subtypes: null

Defined In: [Library lAda)

Figure 8-2. Inspection of Package Body AAA

83

The user may from there, inspect Task ONE which was declared inside of Package AAA. In
Figure 8-3, you can see the inspector at this point. This is inspection in a hierarchical man-
ner. Package AAA has been examined. When Task ONE was examined, Package AAA
moved up one inspector pane. The information displayed depends on the type of the object
under inspection. Both entries are now in the inspection history.

Tnqnectnr _I
TnStiw Frwl Artinn fln*innn

(Package Body AAA)
(Task ONE)

(Package Eody AAAW
Local Declarations

Packages: null
Tasks: (Task ONE) (Task TWO)

FTask ONE8
Local Declaration

Procedure: null
Functions: null
Entries: (Entry READ) (Entry Write)
Variables: (Variable Readtimnes} (Variable Writeines}
Constants: nunl

Defined In: (Package AAA)

Figure 8-3. Inspection of Task ONE

To examine the program execution, the execution executive might first be examined. The in-
formation displayed for the inspection of the runtime structure is vastly different than that
displayed for the compile-time structure. From there, an activated task may be inspected.

84

Inside this task, a history stack element or a control stack element might be examined. The
resulting display can be seen in Figure 8-4. It is a hierarchical inspection of the execution
state.

C3 I~nspector =
In"M~ Ex 14 Arinn QU e nne

Execution Eecutive
{Task *Default-Main*: Completed)
((Exec of (TWO.READ (readparam))) 169 (Exec of Entry Call READ) 172 (Exec of ONE.W

Execution xecutive
Active Tasks: ((Task ONE: suspended) (Task TWO: suspended) (Task *Default-

Scheduling Criteria: Round-Robin
Global Data: (Activation of Package STANDARD

I=as *Default-Main* }

Control Stac l WControl Stack 49961516
History Stack: ((Exec of TWO.READ (readparam)} 169 (Exec of Entry Call REA
Activation Records: IActivation of Package Body AAAS

History S C o
Q Elaboration of Package STANDARD) 0

tInitialization of Variable WRITEPARAM 20
dElaboration of Package AAA r 3
A Exec of Entry Call READ) 34
iExec of ONE.READ (writepara) 31
(Exec of Entry Call WRITE) 106
(Exec of {ONE.WRITE (writeparam)} } 103
(Exec of Entry Call READ) 172

Figure 8-4. Inspection of Runtime Structure

8.1.2.3 Inspector Commands

The user can issue commands in the inspector to inspect or find certain objects. There are

several input methods for the commands. All commands available through the menu bar at
the top of the window are also available through the command line at the bottom of the win-
dow. Some commands can be transparently invoked by a mouse action or key binding.
Additional commands are initiated only by the mouse. The mouse is especially useful in the
inspector to indicate whic'h object should be inspected next.

The commands have been divided into pull-down menus accessed through the menu bar and

mouse activated commands. Each of the categories of commands will be introduced and the
associated commands discussed in detail. If an input menu is used for several commands, the

85

listing of each of these commands will follow the input menu description and indicate it is con-
tained on that menu. These commands are also individually accessed through the Command
Line. Figure 8-5 displays the commands available and the menus to which they belong.

Name... Show Implicit
Class... Hide Implicit

[E A~$qspector 0
Insct Find Ac n Options

Inspecn History

Ins tor k

Object... Clear

Current Library ispecto Decache

Execution Executive Exit

Execution Point

Figure 8-5. Inspector Commands

8.12.3.1 Command Template

For each command, a listing will appear in the format shown in Figure 8-6. Each listing will
include first the command tide and any arguments. A default key binding will be given if appli-
cable and an indication if the command is available through the mouse. Next, a description of
the command and its arguments will be given. The listing will include a description about the
input method, if necessary. This is needed, for example, if an intermediate window appears
for additional input when using the menus. Last, if there is any default it will be noted.

Command Title (argument 1) default key binding
(argument n) mouse action

Discussion of command functionality and interface. This description might
include an illustration of an input frame needed to receive input. If there
is a default for this command it will be explained here.

..

Figure 8-6. Command Listing Template

86

8.1.2.3.2 Inspct

The next object for inspection is specified with the commands in the Inspect Menu. The ob-
ject then appears in the lowest inspection pane, and the object identifier appears at the
bottom of the inspection history pane.

o [] Ada Inspector 0I

Find Action Options
Object... story
Current Library
Execution Executive
Execution Point

Inspector

Command Line

Figure 8-7. Inspect Menu

Object... {identifier} no default key binding
no mouse action

A frame appears to receive the identifier that specifies the object to be in-
spected.

Inspect Object
Name:I

OK Cancel]

Figure 8-8. Inspect Object Input Frame

Current Library no default key binding
no mouse action

The top level compile-time structure of the current library is inspected.
This is the package that implicitly contains all compilation units declared
foi the current library.

87

Execution Executive no default key binding
no mouse action

The top level of the execution state is inspected. This is an inspection of
the execution of the code, not the structure of the code. The information dis-
played includes the set of activated tasks, the global history stack, and
trace point table.

Execution Point no default key binding
no mouse action

The execution state at the current execution point is inspected. Unlike the
inspection of the Execution Executive, inspecting the Execution Point is
the examination of a single activated task. Information about this task in-
cludes its control stack, private history stack, and run state.

8.12.3.3 Find

The Find Menu allows a user to inspect an object without knowing its complete unique iden-
tifier. An argument is given for each command which directs the inspector to look for certain
objects. A list is then returned as the object to inspect. From there, the mouse can be used
to inspect a specific element of this list of objects.

03 Ada Inspector 03
Inspct Action Options

Name... story
Cass...

Inspector

Inspector

Command Line

Figure 8-9. Find Menu

Name... (identifier) no default key binding
no mouse action

This command accepts an identifier as an argument. The compilation unit is
then searched for each occurrence of this identifier. A list of the objects

88

named by the identifier is returned to the user. The frame used for input is
displayed in Figure 8-10.

Fipd Objects
Name:

OK Cancel

Figure 8-10. Find Name Input Frame

Class... {class of object) no default key binding
no inouse action

One or more classes of object such as package, variable, or operator are
chosen as search qualifiers from the menu as it appears in Figure 8-11. A
list is then returned with all objects of that class. The search can, but need
not, be restricted by entering a specific name. If executed from the menu,
the input frame contains the classes available. The All Program Units op-
tion is available to easily choose all classes of program units with one ac-
tion.

Find Class
Name:1

Data Objects
O constant 0 variable Dexception

Program Units
o Entry 0 Procedure 0 Function 0 Task 0 Package
o Generic Package 0 Generic Procedure
0 Generic Function 0 All Program Units

Types
0 Array [" Record 0 Real D Enumeration
0 Package Type 0 Task Type
0 All Types

OKCance
Figure 8-11. Find Class Input Frame

89

8.1.2.3.4 ActIon

The Action Menu contains commands that act on all panes of the inspector window.

0- Ada Inspector 01
Inspect Find Options

Decache Y

Exit

Inspector

Inspector

Command Line

Figure 8-12. Acdon Menu

Clear no default key binding
no mouse action

The display of the inspector windows and the inspection history are
blanked.

Decache no default key binding
no mouse action

This command is a mechanism to ensure that any changes made to the
source of the program will be reflected in the inspection of the program. It
is a good idea to Decache when returning to the inspector after interpreting
or editing.

Exit no default key binding

no mouse action

This command quits the inspector, returning to the caller.

90

8.1.2.3.5 Options

The commands of the Options Menu allow some specific customization of the inspector infor-
mation.

0- _____Ada Inspector 0
Inspect Find Action

Inspecti Show Implicit
In• -Hide Implicit

i ~Insp.ct.- ,

Inspector

Inspector

Command Line

Figure 8-13. Option Menu

Show Implicit no default key binding
no mouse action

All the implicit program structure as well as the user-defined program
structure is displayed. Implicit information such as the function '+' could
appear in an inspection pane. The inspector is defaulted to show implicit in-
formation.

Hide Implicit no default key binding
no mouse action

Implicit information is hidden from the inspector display. This allows the
user to more easily scan the user-defined compile-time structure. Upon ex-
amination of all functions, only user defined functions will appear. Func-
tions such as '+', IN, or AND will not be displayed. The inspector is de-
faulted to show implicit information.

91

8.2 Abstract Semantic Model

Each object in the Abstract Model is tagged with a field which indicates whether it is seman-
tically correct and, therefore, interpretable.

92

9
Porting Considerations

Summary

This chapter explains porting considerations, including:

* Portability to New Platforms

" Strongly Typed vs Weakly Typed Languages

93

93

9.1 Portability to New Platforms

Several issues arise in considering the portability of the AW to different platforms. Perhaps
the dominant issue is that of language, which is dealt with in the next section. The remaining
considerations are the nature of the operating system support for process and interprocess
communications, and the facilities available for windows and window management.

9.1.1 Operating System Process Support

In the P1 and P2 language systems, the Editor/Displayer and the Parser are in separate pro-
cesses. These processes communicate frequently, at least once for every keystroke. In the
P6 prototype, the abstract model becomes yet a third process, with additional communica-
tions between the parser and the abstract model, and between the graphics structure editor
and the abstract model.

This frequent interprocess communications requires that the operating system provide effi-
cient support for context switching and a scheduler capable of working in small time
increments. A possible alternative would be the operating system support of lightweight
processes.

9.1.2 Window Systems

The largest obstacle to porting the AW is the window system. Despite the creation of a ge-
neric window system as part of the project, this window system is built upon the Symbolics
window system, which has many capabilities not found in other windowing systems. The
language editor on the Symbolics utilizes the Symbolics "scroll maintain list" capability to
manage interaction with the mouse in several of its windows. Capability similar to this is
not found in any of the major window systems in use. The lAW Inspector is built on top of a
substrate used for the Symbolics inspector. In order to port the Inspector this substrate
would all need to be reengineered and coded. In all likelihood, most of the window dependent
portions of the AW would have to be completely recoded to make them work under another
window system.

94

9.2 Language Issues

The lAW was written in Lisp with the Flavors object-oriented extensions. The simplest
means of porting would appear to be to take the Lisp code and simply execute it in the de-
sired workstation environment. Aside from window and operating system issues
(addressed in the previous section) this approach would require workstations with configura-
tions substantially larger than minimal (24MB physical memory) to get good performance.

Alternative approaches require the translation of the Lisp code into another language. C
with an object oriented extension (C++ for example) is a likely candidate. Translation into
languages like Ada and Modula-2 that do not have object oriented extensions would proba-
bly require a major redesign.

95

10
Productivity Gain Estimate

Summary

This chapter relates productivity issues, including:

Examples

* Productivity Gains - Structure Editor

• Productivity Gains - State Machine Editor

96

10.1 Preliminary Results

Due to the complexity of the language processing work, none of the delivered prototypes
were complete enough in language coverage to be used in an actual project in order to derive
productivity data. However, some preliminary data is available from the use of two of the
graphic editors. These results are reported in the following sections.

10.1.1 Productivity Gains - Structure Editor

Several trial experiments were run in an effort to appreciate the productivity gains that are
possible using a graphic structure editor. In these experiments, one person was asked to de-
velop a Buhr diagram of a piece of software using pencil and paper, and then use an ordinary
text editor to create the code outline implied by the diagram. A second person used the lAW
structure editor and the code generation capability to perform the same tasks. In these ex-
periments, the structure editor approach showed a 5:1 to 10:1 productivity improvement.

We must realize that these results only cover a small portion of the development life cycle.
The code generated is simply an outline of the program units indicated by the diagram, and all
of the actual executable code still has to be added. The effort required for this portion of the
design process was not included in the experiment.

10.1.2 Productivity Gains - State Machine Editor

One of the research programs at the GE Corporate Research and Development Center ex-
pressed an interest in using the state machine editor to design communications protocols.
This organization spent a considerable amount of time evaluating the state machine editor,
and reported back productivity improvements ranging from 5:1 while experimenting with pro-
tocols up to 50:1 while formally developing final protocols.

The circumstances surrounding this rather astounding result must be understood in order to
interpret the productivity gains correctly. First, it r.ust be recognized that, in communica-
tions protocol design, once the state machine is specified, the job is done. This is in sharp
contrasi to most other state machine applications, in which action routines (specifying what
to do when a particular state transition is taken) must be added to the state machine in order
to get a complete program. The second point that must be recognized is that this organiza-
tion actually had two groups of engineers: communications engineers, who create the state
diagrams; and software engineers, who translate the diagrams into executable code. In this
particular application, the use of the state machine editor allowed the complete removal of
the software engineer from the process.

The research program that performed these experiments is now supporting the conversion of
this editor to "C" on a more readily available workstation platform so that it can become part
of a communications engineer's development environment.

97

11

ContractIAccomplishments Comparison

Summary
This chapter describes the overall project accomplishments including: prototypes, the core
system (IAda language, interpreter, hot editor, generic window interface, and project Data
Base), the Smart Librarian, productivity measurements, additional tools, the help system
and expert system tools.

98

11.1 Prototypes

As discussed in earlier sections, the original contract called for the production and delivery of
seven prototypes. Due to changes in the total amount funded, and alterations in the sched-
ule of disbursement, only five prototypes were actually delivered under the contract. A sixth
prototype, which was developed with GE funding during a hiatus in the contract funding, was
delivered to the Air Force under the terms of a memorandum of understanding regarding pro-
prietary information. A seventh prototype, which would have been delivered under the
contract, was under development at the time that the stop work order was received.

99

11.2 Core System

The core system consists of the IAda language, the Interpreter, the Hot Editor, the Generic
window Interface, and the Project Data Base. The following sections describe the accom-
plishments in these areas.

11.2.1 lAda language

The initial IAda language (referred to as the P1 language) was a simple expression language
that was used to demonstrate the functionality that was expected from the editor, interpreter
and hot editor. It was delivered with the P2 prototype. The P2 language began to approxi-
mate true Ada. It relaxed constraints on declaration ordering, and allowed bodies to be
entered before their specifications. The syntax of the language was nearly identical with
Ada, differing only in that some constraints that are enforced syntactically in the Language
Reference Manual become semantic checks in IAda. As the prototypes progressed from P2
through P4, L5, and the P6 prototype that was under development when the stop work order
was received, more of these constraints were moved from syntax to semantics. For exam-
ple, in the latest version, an empty sequence of statements is allowed anywhere that
statements are expected. This allows the program to be analyzed in other ways, and simply
generates a warning that this is not legal Ada.

The P2 prototype contained a parser (syntax analyzer) for the entire Ada language (with
some relaxation of checking). P3 introduced semantic checking for simple types, packages,
tasks and subprograms, as well as assignment statements. P4 included attributes for simple
types, user defined operators, and case statement support. The L5 prototype continued the
expansion of type coverage, and work was in progress toward full language coverage at the
time that the stop work order was received.

11.2.2 Interpreter

The interpreter design was begun during the development of the P2 prototype. In that proto-
type, the initial form of the abstract semantic model (then called the filter-net, which was
part of the [FORM) was defined. In P3 and P4, the parser extensions necessary to construct
portions of the abstract model from the text were put into place, and the interpreter itself was
added. L5 extended the language coverage of the interpreter still further, and work was in
progress toward full language coverage at the time that the stop work order was received.

11.2.3 Hot Editor

The hot editor, as designed, is not really a separate entity, but rather a mode of operation of
the system. The intent was to provide a capability of interpreting a program while making
changes to the program, akid to have this be a single interactive process from the user's per-
spective.

100

The initial design of the system, in which the parser serves to recognize program constructs
and build their abstract representations in the abstract model, and the interpreter operates
from the abstract model itself, lends itself well to this concept. From the P3/P4 prototypes
on, changes to the text that did not affect the current point of execution would be gracefully
accommodated by the abstract model and the interpreter.

The interpreter was designed to have an execution history record, which could be used to un-
do the execution of the program to just before the faulty statement, so that the code could be
corrected and execution resumed. This capability was being implemented when the stop

£ work order was received. Also in progress was the implementation of a scheme to recognize
when changes to the program being executed affect regions that have already been executed,
so that the point to which execution must be backed up can be automatically recognized.

One further level of hot editor behavior that was also being worked on was concurrent up-
date: the ability to alter the program being executed from the graphics window as well as the
language window.

11.2.4 Generic Window Interface

During the development of the graphics editors, a number of standardized capabilities were
implemented for menu and form presentation and management, as well as icon and connec-
tion drawing and object selection. Progress on standardizing this aspect of the system was
hindered substantially by four major revisions to the Symbolics operating system that oc-
curred during the course of the contract.

11.2.5 Project Data Base

The abstract model was designed so that the individual compilation units of the abstract
model could be stored and retrieved independently. When the funding was terminated, work
was in progress to not only implement this capability, but to save the state of the semantic
analysis as well. This capability included versioning of the individual compilation units.

101

11.3 Smart Librarian

The smart librarian portion of the project focused on constructing a tool that would allow the
user to browse and select elements of a library for inclusion in his design. An initial proto-
type of the librarian was delivered with the P4 prototype.

This tool basically took a directory containing the library elements, and an additional file that
gave rules for querying the user for information necessary to select the appropriate library el-
ement. The initial library consisted of the Booch data structures, as described in his book.

Having gone through the exercise of implementing this librarian, we recognized that the real
challenge was not in implementing the tool, but in developing a categorization and location
scheme that was appropriate for the library. We felt that further research into these issues
would not contribute significantly to the improvement in productivity of a programmer.

102

11.4 Productivity Measurements

Due to the lengthy development time of the language processing portion of the system, the
lAW never matured enough to be used on a project level. Some data were obtained on the
use of the graphic editors alone, as described in chapter 10.

103

11.5 Additional Tools

The BRAT editor, state machine editor, and decision table editors evolved substantially
through the P2, P3 and P4 prototypes. Non-boolean capability was added to the state ma-
chine editor, and Brat editor was evolved into a structure editor capable of showing both
hardware and software designs.

Stand-alone data flow and tree editors were developed and delivered as part of the P2 proto-
type. The tree editor was used extensively during the development of the incremental
parser. For the P3 prototype, the dataflow editor was coupled to the Brat editor to allow de-
signs started with data flow analysis to be transitioned into BRAT where they could be
completed.

When the project was terminated, work was under way to modify the structure editor to use
the abstract model as its internal representation. This work is described in more detail in
chapter 6.

104

11.6 Help System

A elementary version of the help system was delivered with the PO prototype. This system
allowed users to browse the user's manual on-line. For the P1 prototype Al techniques
were added to the help system allowing the user instant access to information concerning the
operation that they were performing. A more advanced version of the help system that incor-
porated command scenarios was developed after P1 was delivered. This allowed the user to
see exactly how a command worked by watching the system as it performed the command on
a sample database.

105

11.7 Expert System Tools

Using the Delphi expert system, several tools were developed to aid in the system design
process. In the P1 prototype, tools were delivered that guided users in the choice of data
structures and in the selection of searching and sorting algorithms. These systems were de-
signed to ask users a maximum of ten questions and then come up with a recommendation.
If users had questions about the recommendation, the system was able to provide them with
the reasoning used in making the selection. Two more expert system tools were added for
the P2 prototype; these were the task communications assistant and the mode type assis-
tant. These system were also built using the delphi expert system.

106

12
Lessons Learned

Overview

This chapter contains an overall project evaluation and reflects upon some of the lessons
learned throughout the development process.

It includes some discussion of rapid prototyping methodology, incremental compiler
technology and of multiple views built upon a central database.

1

107

12.1 Project Evaluation

As mentioned elsewhere in this report, the development of the language processing technolo-
gy turned out to be a more formidable task than expected. At the outset, there was a
conscious decision that the development of a compiler would not be attempted as part of this
project. However, during the course of the project, what amounts to a new compiler tech-
nology had to be developed to provide the necessary functionality for the various tools.

The central importance of the language technology to the overall operation of the workstation
forced a redirection of resources into the language work, at the expense of some of the more
peripheral items such as help systems and expert advisors. Had the language technology
existed at the start of the project, the full scope of planned work would have been achievable
within the planned scope of effort.

108

12.2 Rapid Prototyping Methodology

Rapid prototyping makes one fuirdamental assumption concerning the development: that the
results of one step may be evolved into the next prototype. In the case of the LAW language
technology, this did not turn out to be a valid assumption. The PI language prototype was
developed using a subset of Ada for which some simplifying assumptions could be made.
These simplifying assumptions made it easy to develop the suite of tools (editor, analysis,
interpreter), but since those assumptions were not valid for the entire Ada language, all of
the tools had to be completely redone over the next three prototypes.

Looking at the rapid prototyping process with a 6-month cycle, a typical breakdown of work
over the 6-months is as follows:

" Month 1: Cleanup from the previous prototype. Bug fixes, support, analysis of les-
sons learned, direction setting for the next prototype.

" Month 2: Analysis and design for the next prototype. Decide in detail what is to be
done. Allocate resources for remainder of prototype.

• Months 3&4: Coding. Implement the design. Unit test the components.
* Month 5: Integration and integration testing. Ensure that the essential functionality

is in place and working.
• Month 6: Stabilize the prototype and Document. Make sure that the annoying little

"crash" bugs are found and removed. Provide user documentation. Prepare for the
review.

In retrospect, it appears that rapid prototyping may be appropriate for the development of
highly interactive systems that do not have large computational tasks embedded within them
(such as semantic analysis), but its use in an application that has such a large computational
task at its core is questionable. This is particularly so when the nature of the computation or
the method of implementing it is not well defined at the outset. The use of the rapid prototyp-
ing paradigm in this situation skews the focus of the work away from spending the time to
analyze the computational task in favor of trying to deliver something that is demonstrable
as the next prototype. In the short rapid prototyping scheme, there is not enough time to do
significant analysis and modify the design based on the analysis within the 6-month cycle.

109

12.3 Incremental Compiler Technology

While the extension of the semantic analysis to the full Ada language is not yet complete, it
appears that the notion of adding an incremental compiler to an editor is quite feasible given
a 2-4 MIP workstation with 8-12 MB of physical memory for each user. For the interpreter
to be useful on larger programs, extensions to the approach would have to be made to allow
the use of compiled code in conjunction with the interpreted code. Operating in this mode,
the modules under test would be interpreted, and compiled code would be used for the other
modules. A preliminary investigation indicates that this is practical, but would probably re-
quire the active participation of the compiler vendor to implement.

11

110

12.4 Multiple Views Built on a Central Database

Achieving this goal was a major objective for the final prototype that was under development
when the funding was terminated. While the work was not completed, enough progress was
made to make some observations.

The most difficult task in reaching the goal of multiple views of a single database is to select
the appropriate concepts to model in the database and to interpret each feature of the text
and graphics for this model. For some aspects of a design, the representation and mapping
is obvious: a declaration in the language view is mapped into an abstract representation of
the thing being declared; similarly a package in a structure diagram can be readily mapped in-
to its abstract representation, and, indirectly, related to the language representation.

A subtle distinction arises when we consider the meaning of a function call in the language
view vs. an arrow from the caller to the called function in the graphics view. If we attempt to
equate the two, then there must be an arrow in the graphics view for each occurrence of the
function call in the language view. Furthermore, the presence of the arrow in the graphic
view does not provide enough information to recreate the language view: it does not specify
where the reference occurs in the code view, nor does it specify the relative placement of ref-
erences.

Our consideration of this distinction has led us to interpret that the arrow in the graphics
view represents a constraint that there must be at least one reference to the function in the
language view. The implication here is that the reference in the language view is, on an ab-
stract level, different than the arrow in the graphics view, and thus has a different abstract
representation. Consistency checking between these abstractions now becomes part of the
abstract model processing.

To consider the graphical behavior editors, such as the state machine and decision table edi-
tors, a more difficult problem arises: there is no unique mapping from the language view to
the graphics view, and back again. And, the behavior described by a given state machine
may be implemented by any number of programs. Conversely, it is an open question as to
whether a given segment of code is, in fact, a state machine. How to deal with this situation
remains an open question.

4"

Ill

PL.

Index Descriptor 67
Literal 42,44

A Type 42,44,46
Variable 42, 44, 46

Abstract Data Types 53 Descriptor View 67
ABSTRACT DESIGN REPRESENTATION 23 Descriptors 39
ABSTRACT FOREST 30 Design Concepts 17
ABSTRACT MODEL 30 Direct Environment 51
ABSTRACT MODEL CHANGE Direct Environment Computation with Masking

NOTIFICATIONS 30 Unions 50
Abstract Model Interface 75 Disabling User Input 34
abstract model interface 70 Display-Oriented Policy 35
Actual Reference 68 dominant set 45
Ada DTE 6, 7

Homograph 44
Ada "use" clauqe 49
Ada Object Descriptor 67, 68
Architectural Mode 32 EDITOR 23
attributed grammar 39 element 40
ATTRIBUTED PARSE TREE 23 Elements, Sets and Monitors 40

Engine View 67
B ERROR MESSAGES 30

Evaluation of Initial Plan L.-ing Prototyping
BBE 7 Methodology
Black-Box Editor 7 Executable Block 67
boolean sets 43 Existential Reference 68
BRAT 6,7
Buffer-Oriented Policy 35 F
Buffers, Editors and Windows 33
Buhr Editor 7 filtered sets 43
Buhr Representation and Ada Translator 6 Full Ada Direct Environment CompuLation 51

Function Execution 25,28

C G
Change Notification 25, 30
CHANGES TO ABSTRACT MODEL 23 GE Developed Prototype L5 14
CHANGES TO ATrRIBUTES 23 grammar
compile-time semantics 39 attributed 39
Conservauve Policy 35 Graphics Tools
Corresponding Descriptor 51
Corresponding Local Declarations 51 H
Create/Delete/ Modify Abstract Model Objects 30
Create/Delete/Modify Abstract Forest Nodes 30 Handling Type-Ahead 35
CREATED/ DELETED ABSTRACT SEMANTIC Hot Editor

MODEL OBJECTS 25,28
Current Design Concept 18

D IFORM Manager 22

Incremental Parsing and Node Reuse 12
daemon 40 Indices 47
Data Structure Selector 7 Input Processing 30
Decision Table Editor 6, 7 Interrupted Work
Declarative Unit Descriptor 67,68 Prototype P6 15

113

L P3/P4 Prototype 10
Parent's Direct Environment 51

Language Processing parse tree 24
Language Processing Control Parser 22
Lex/Parse 25, 28 Productivity Gains - State Machine Editor 97
Lexical Declarations 51 Productivity Gains - Structure Editor 97
LIST OF CHANGES TO PARSE TREE 23 Prototype L5 14
LIST OF PENDING CHANGE NOTIFICATIONS Prototype P6 15

25
LISTS OF NEW/ALTERED TOKENS 25, 28 R
LITERAL DESCRIPTOR 42,44
Local Declaration Sets from Used Package recessive set 45

Specifications 51 Recovering From the Selection of a Nonexistent
Local Declarations 51 Object 35

Reference 68

M References 68
Actual 68

mapped sets 43 Existential 68
Masking Union 44,51 Rewrite Rule Laboratory 6
masking union 49 RRL 6
Mathematical Models of Types 53
MODIFIED ABSTRACT SEMANTIC MODEL S

OBJECTS 25,28
Modify Abstract Model Objects 30 Scoped Language for Attributed Grammars 22
monitor 40,43 Search/Soft Selector 7
Monitors 39 Semantic analysis 24

SEMANTIC ANALYSIS CHANGE

N NOTIFICATIONS 30
semantics

Node List Processing 25, 28 compile-time 39
Node Reuse 12 set 40
NODES LINKED INTO TREE 25.28 dominent 45

recessive 45

O Set of Used Declarations 51
Set of Used Packages 51

Object Selected by Editor No Longer Exists 34 sets
Object Selection and the Ut.,olete Window Map boolean 43

Problem 34 filtered 43
Object Selection Policies 34 mapped 43

Buffer-Oriented Policy 35 SLAG 22
Conservative Policy 35 SLAG processor 22
Display-Oriented Policy 35 Smart Librarian 11
Opportunistic Policy 35 SME 6.7

Opportunistic Policy 35 State Machine Editor 6,7
ORDERED LIST OF FUNCTIONS 25,28 STRUCTURAL CHANGES TO TREE 23
Original Design Concept 17 Structure Editor, Abstract Model 67

Summary of Work

P
PO Prototype 6,19 T
P1 Graphics 7 Technical Accomplishments
P1 Language 8 TEXT EDITOR COMMANDS 25,28
PI Prototype 7,20 Transaction Processing 30
P2 Prototype 9 Truth Table Editor 7. 8

114

TFE 7,8
TYPE DESCRIPTOR 42,44,46
Type-Ahead 35
Types 52

abstract data 52
derived 52
inherited 52
mathematical 52
subtype 52

U
UPDATED NODE ATTRIBUTES 25,28
User Commands 33

V
VARIABLE DESCRIPTOR 42,44,46.50
View 67
Viewed Object Not Selected by Editor
Visibility Checks 52

W
Window Maps 33

115 *U.S.Government Printing Office.:1990-748-056/24507

